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1. Introduction

In a recent paper, Dennis–Kitaev–Landall–Preskill
(DKLP)1) showed that error correction in the toric code for
stable storage of quantum information is closely related to
the phase transition between ferromagnetic and paramag-
netic phases in the two-dimensional �J Ising model of spin
glasses. This is remarkable in that it paves a way for
transferring results, concepts and insights between the two at
first sight unrelated domains of quantum error correction and
spin glasses, and provides the motivation for the present
work.

An important aspect of the toric code is that it has a finite
error threshold; this is the critical value of error probability
per qubit beyond which it is impossible to correct errors in
the thermodynamic (large system-size) limit. Thus, for error
rates larger than the threshold, the encoded quantum
information is lost. It is therefore necessary to estimate the
precise value of the error threshold for, e.g., the design of
hardware of quantum memory. DKLP have shown that this
error threshold is equal to the probability of antiferromag-
netic bonds at the multicritical point in the phase diagram of
the �J Ising model on the square lattice.

We do not discuss the value of error threshold itself in the
present paper.1–3) We instead strive to clarify a closely
related problem of the structure of error patterns underlying
a characteristic feature of the toric code, degeneracy, by
deriving bounds on the number of equivalent error patterns.
These bounds are shown to be related to the information-
theoretical entropy of the distribution of frustrated plaquettes
in the �J Ising model. It will also be shown that a lower
bound on the ground-state energy of the �J Ising model can
be obtained from the bounds derived for the toric code.

We outline the link between spin glasses and quantum
error correcting codes in §2. Errors are detected by
measurement of a syndrome, from which the underlying
error pattern is to be inferred and then corrected. Due to the
nature of quantum encoding in the toric code, however,
many error patterns are equivalent (degenerate), and it is
sufficient to infer the equivalence class of the true error
pattern, not the precise pattern itself. In §3 we count the
number of syndromes D and the total number of equivalence
classes C, which is an easy task. The hard part is counting
the number of equivalence classes CðpÞ containing error

patterns with a given fraction p of errors. We first ignore the
issue of degeneracy, and count error patterns instead of
equivalence classes, from which upper bounds on CðpÞ are
derived in §4.1. Lower bounds are discussed in §4.2 and 4.3.
These bounds are summarized in §4.4. One of the lower
bounds involves the ground-state energy of the �J Ising
model, and this fact is used in §4.5 to derive a lower bound
on the latter ground-state energy. The results are summariz-
ed and discussed in §5.

2. Toric Code and Spin Glass

It is useful to first sketch the connection between toric
quantum codes and two-dimensional spin glasses, following
DKLP,1) since most of the readers may be unfamiliar with
this relatively new interdisciplinary field.

2.1 Encoding in the toric code
Consider a square lattice with N ¼ L2 sites and n ¼ 2N

bonds labelled by b ¼ ðijÞ and connecting nearest-neighbour
sites i and j; toroidal boundary conditions are used so that
bonds on a boundary connect to the opposite side of the
lattice. The toric code comprises n quantum (spin-1=2) spins
located on the bonds of the lattice. We call the local Pauli
operators Xb, Yb and Zb. In the Z-basis of the state space,
each basis vector jzi ¼ jfzbgi is specified by the z-compo-
nents zb ¼ �1 of all spins. The Pauli operators then act as
Zbj . . . zb . . .i ¼ zbj . . . zb . . .i andXbj . . . zb . . .i ¼ j . . .�zb . . .i
so that Xb effectively just flips the spin at b; also, Yb ¼
iXbZb.

Quantum states are vulnerable to decoherence, and
robustness should be introduced to protect quantum infor-
mation. Quantum error correction is a powerful method for
this purpose, in which one encodes quantum information by
mapping it to another (redundant) set of quantum states.
Specifically, in the toric code, one maps the state space of
two logical qubits that are to be encoded onto a 22 ¼ 4-
dimensional subspace (the ‘‘code space’’) of the spin
system’s 2n-dimensional state space. This mapping is
redundant because n qubits are used to represent 2 qubits.
A basis j 0i; . . . ; j 3i for the code space can be defined as

j ii /
X
z2Ci

jzi; ð1Þ

where Ci denotes a class of states (equivalence class) to be
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defined shortly. The sum here runs over states jzi which
form cycles within an equivalence class. This means that out
of the four bonds bðPÞ around each lattice plaquette P an
even number are negative (zb ¼ �1). A cycle jzi is thus an
eigenstate with eigenvalue 1 of all the operators ZP ¼Q

bðPÞ Zb. Geometrically, jzi is a cycle if the duals to its
negative bonds form closed loops on the dual lattice (see
Fig. 1).

2.2 Equivalence class
Cycles are called equivalent if they can be locally

deformed into each other, by repeatedly flipping all spins
around some plaquette of the dual lattice. As illustrated in
Fig. 2, this corresponds on the original lattice to applying a
product of operators of the form Xj ¼

Q
bð jÞ Xb, where the

bð jÞ are the four bonds meeting at site j. It is then easy to see
that there are exactly four equivalence classes of cycles,
denoted C0; . . . ;C3: C0 contains all the trivial cycles, which
are equivalent to the empty cycle state jfzb ¼ 1gi. C1 and C2

collect cycles equivalent to a single loop winding across the
lattice boundary in the horizontal and vertical directions
respectively, and C3 those with both a horizontal and a
vertical loop (Fig. 3). In (1), what is meant is that for each
j ii the sum runs over all cycle states jzi in the equivalence
class Ci. This implies in particular that the j ii are invariant
under the action of any of the operators ZP and Xj: the ZP
leave each cycle state jzi invariant, and the Xj only permute
cycle states within an equivalence class,

ZPj ii ¼ Xjj ii ¼ j ii: ð2Þ

In the large-N limit, the toric code has zero code rate R: it
encodes k ¼ 2 qubits using n ¼ 2N qubits, so that R ¼
k=n ¼ 1=N ! 0. The point of this highly redundant encod-
ing is to allow for the correction of errors arising from
decoherence caused by the interaction of the quantum state
with its environment. An error introduced in this way
corresponds to a product of Pauli operators X, Y , Z acting on
some of the quantum spins. Because of Y ¼ iXZ, Y-errors
can be treated as combinations of X- and Z-errors. We write a
state with X-errors on a set of bonds Sx and Z-errors on Sz as

j ~ i ii ¼
Y
b2Sx

Xb

Y
b2Sz

Zb

 !
j ii: ð3Þ

If the product of Xb and Zb on the right-hand side can be
represented by a product of Xj and ZP only, then j ~ i ii ¼ j ii.
In general, however, this is not the case, j ~ i ii 6¼ j ii.

Furthermore, the toric code is in the general class of
Calderbank–Shor–Steane (CSS) codes,4,5) for which the X-
and Z-errors can be treated separately, without interference

Fig. 1. Example of a cycle. Full lines represent bonds with zb ¼ 1 and

wavy lines are for zb ¼ �1. Dual bonds to zb ¼ �1 form a closed loop

(shown dotted).

(a) (b)

(d)(c)

1 2

3

1 2

3

1 2

3

1 2

3

Fig. 2. Four equivalent cycles. Full, wavy and dotted lines have the same

meaning as in Fig. 1. Application of X1 to (a) gives (b); similarly, (c) and

(d) are obtained from (a) by applying X2X1 and X3X2X1, respectively.

(a) (b)

(c) (d)

Fig. 3. Representative cycles of four different classes, C0, C1, C2 and C3

in (a), (b), (c) and (d), respectively.
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between the corresponding error correction procedures
because ½ZP;Xj� ¼ 0 for any P and j.1) We can therefore
focus in the following exclusively on X-errors, i.e., spin
flips. Z-errors can be discussed separately in the same
manner but on the dual lattice.1)

2.3 Syndrome and error correction
We define an error pattern f�bg such that �b ¼ �1 if an X-

error has occurred on bond b (i.e., if b 2 Sx) and �b ¼ 1

otherwise. To diagnose where errors have occurred, one
measures all the ZP. Without corruption all measured values
would be 1 according to (2). The errors give a nontrivial set
of measurement values

Q
bðPÞ �b ¼ �1 at those plaquettes

around which an odd number of errors have occurred, giving
the syndrome, the set of plaquettes with measurement value
�1. It should be stressed that the syndrome measurement
does not cause any quantum decoherence: From (3), one
easily sees—by commuting ZP to the right through the
various Xb and using (2)—that even a corrupted state j ~ i ii is
an eigenstate of each ZP. Explicitly, ZPj ~ i ii ¼ �j ~ i ii, with
the plus sign when there are an even number of errors around
P and the minus sign otherwise.

One can visualize the error pattern � by drawing the duals
to the bonds with �b ¼ �1; these form ‘‘error chains’’ ending
in ‘‘defects’’, i.e., plaquettes where the syndrome has
detected an error (Fig. 4). The syndrome measurement is
therefore highly ambiguous: any error chain �0 with the same
set of defects as � gives the same syndrome as exemplified in
Fig. 4. The condition for this is

Q
bðPÞ �b ¼

Q
bðPÞ �

0
b for all

plaquettes P and hence
Q

bðPÞ �b�
0
b ¼ 1: the bonds with �l�

0
l ¼

�1 form a cycle ��0 in the sense defined above.
Now assume we have inferred some error pattern �0

consistent with the syndrome [e.g., Fig. 4(a)], so that ��0 is a
cycle, where � is the actual error pattern [e.g., Fig. 4(b)]. If
we correct errors according to �0, by applying a spin-flip Xb

to all spins with �0b ¼ �1, this can be viewed as first
correcting the errors �b that actually occurred, followed by a
series of spin-flips where �b�

0
b ¼ �1 [four double lines in

Figs. 4(a) and 4(b)]. The first stage recovers the uncorrupted
code state j ii. If ��0 is a trivial cycle (��0 2 C0), then the
second stage corresponds to applying a product of operators
of the form Xj. But these leave code states invariant, see (2),
so that our error correction was successful. This is a key
difference of this degenerate quantum code to classical error
correction: we do not need to detect all details of the error
pattern �, but only its equivalence class (defined as the set of
all �0 such that ��0 is a trivial cycle). Error correction

according to �0 will be unsuccessful, on the other hand, if �
and �0 are non-equivalent, i.e., if ��0 is a nontrivial cycle like
Fig. 5: the second stage from above then mixes up the basis
vectors of different code spaces.

2.4 Spin-glass representation
We can now relate the decoding task to a spin glass

problem. The condition that ��0 is a trivial cycle can be
written as �0ij ¼ �ij�i�j if we revert to denoting each bond b

by its end points i and j. Here the �i ¼ �1 are classical spin
variables. Then the second (conceptual) stage of error
correction discussed above would consist of the application
of an operator Xj for each site where �j ¼ �1 (the central
site in the case of Fig. 4). Assuming that errors were
generated independently and with probability p on each
bond b, we assign an overall probability

Pð�0Þ ¼
Y
ðijÞ

ð1� pÞð1þ�
0
ijÞ=2pð1��

0
ijÞ=2

¼ ½pð1� pÞ�n=2 exp Kp

X
ðijÞ
�0ij

 !
ð4Þ

to any error chain �0; here we have defined Kp ¼ 1
2
ln½ð1�

pÞ=p�. The total probability for error chains �0 which lead to
successful error correction is therefore proportional to

Z0 ¼
X

�0:��02C0

exp Kp

X
ðijÞ
�0ij

 !

¼
X
�

exp Kp

X
ðijÞ
�ij�i�j

 !
:

ð5Þ

This is the partition function of an Ising �J spin glass with
local interaction strengths Jij ¼ Kp�ij; the relation between
Kp and p implies that the system is on the so-called
Nishimori line (NL).6,7) If the actual error pattern � was
indeed generated according to the assumed probability
weight (4), each bond in (5) is ferromagnetic with
probability 1� p (�ij ¼ 1) and antiferromagnetic otherwise.

The total probability for error chains �0 which lead to
faulty error correction has the same form as (5), but with
modified boundary conditions. For example, any �0 such that
��0 2 C2 can be written as �0ij ¼ �ij�i�j with the convention
that all bonds along, say, the left boundary of the lattice are
inverted. This corresponds to the use of antiperiodic
boundary conditions in the left–right direction when eval-
uating the spin products �i�j. The total probability weight Z2

for error chains �0 with ��0 2 C2 is therefore a partition
function of the form (5) with these modified boundary
conditions; in Z0 we had implicitly assumed periodic
boundary conditions. Similarly Z1 and Z3 correspond to

(a) (b)

Fig. 4. Error patterns with the same syndrome (crosses). Double lines are

bonds where �b ¼ �1. Error chains are written in dashed lines.

Fig. 5. Non-equivalent error patterns with the same syndrome.
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the partition functions for antiperiodic boundary conditions
in the top–bottom direction, and in both left–right and top–
bottom directions.

Combining the above results, we conclude that our total
probability of inferring from the syndrome an error chain �0

which leads to successful error correction is Z0=ðZ0 þZ1 þ
Z2 þZ3Þ and close to unity as long as Z0 � Zk for
k ¼ 1; 2; 3. This condition is met if p is small enough so that
we are in the ferromagnetic phase of the spin system defined
by (5): the existence of domain boundaries then implies for
the free energies Fi ¼ �T lnZi that Fk � F0 (k ¼ 1; 2; 3) is
positive and of order L, thus Z0 � Z1;Z2;Z3. In the
paramagnetic phase, on the other hand, Fk � F0 ¼ Oð1Þ and
there will be a nonzero probability for error correction to
fail. In summary, the toric code can correct errors below an
error threshold, i.e., in the range 0 � p � pc where the
associated �J Ising spin glass on the NL is in its
ferromagnetic phase on the square lattice; pc is then the
location of the multicritical point. We may therefore be able
to learn something about the spin glass problem from
knowledge about the toric code and vice versa. This is our
motivation for the present work.

3. Simple Number Counting

The argument in the previous section suggests that the
numbers of possible syndromes and equivalence classes of
error patterns would give important measures of perform-
ance of error correction in the toric code. We therefore
discuss this problem in the present and next sections.

Let us first count the total numbers of different syndromes
and equivalence classes, without specifying the error
probability p. Since at each plaquette the syndrome
measurement of ZP can give either þ1 or �1, the total
number of syndromes is

D ¼ 2N�1; ð6Þ

using that for the square lattice the number of plaquettes is
equal to the number N ¼ L2 of lattice sites. The factor 2�1

arises because only an even number of sites with nontrivial
syndrome ZP ¼ �1 can exist, as can be seen from the fact
that the product of all ZP is the identity operator on the torus
(all Zb appear twice from neighbouring plaquettes and
Z2
b ¼ 1).
The total number of error patterns is 2n. And the number

of error patterns in an equivalence class is 2N�1 because, as
explained above, equivalent error patterns are related by
�0ij ¼ �ij�i�j. Each of the �i ¼ �1 can be chosen independ-
ently and gives a different �0, except for an overall reversal of
the spin configuration which leaves �0 unchanged and gives
the factor 2�1. Thus the number of equivalence classes is

C ¼
2n

2N�1
¼ 2Nþ1 ð7Þ

which is equal to 4D. This correctly indicates that each
syndrome corresponds to four different equivalence classes
of error patterns. The above argument easily generalizes to
other lattices: in general, D ¼ 2P�1 where P is the number
of plaquettes, while C ¼ 2n=2N�1 ¼ 2n�Nþ1. The equality
C ¼ 4D then follows from Euler’s theorem n ¼ P þ N.

If we now specify the fraction of errors or error
probability p, most of the 2n error patterns are excluded

because the number of errors these patterns have is different
from np. Thus the number of equivalence classes containing
patterns with np errors, CðpÞ, is significantly smaller than C.
Then the number of syndromes D (¼ 2N�1) is much larger
than CðpÞ, and we have a sufficient number of syndromes to
specify the equivalence class corresponding to a given
syndrome, D ¼ C=4 � CðpÞ. This implies that a simple
number counting does not lead to the critical value pc by the
classical argument that, beyond pc, the number of errors
exceeds that of syndromes (CðpÞ > D) and one cannot
identify the error from the syndrome, leading to unsuccessful
error correction.

4. Bounds on Equivalence Classes and Ground-State
Energy

We next proceed to evaluate CðpÞ. Upper and lower
bounds are derived for this quantity, which will further be
shown to give a lower bound on the ground-state energy of
the �J Ising model.

4.1 Upper bounds
Let us begin by constructing upper bounds. A trivial upper

bound for CðpÞ is C,

CðpÞ � C ¼ 2Nþ1 � 2N ; ð8Þ

where the last expression gives the result to exponential
accuracy, which is all we are normally interested in. To
derive another upper bound, let us temporarily ignore the
equivalence of error patterns, which leads to overcounting.
The number of classically distinct error patterns with a
fraction p of errors is

n

np

� �
� 2nHðpÞ; ð9Þ

where HðpÞ is the binary entropy,

HðpÞ ¼ �p log2 p� ð1� pÞ log2ð1� pÞ: ð10Þ

We therefore have

CðpÞ � 2nHðpÞ ð11Þ

because equivalence will reduce the number by grouping
errors into classes. The two upper bounds (8) and (11) cross
each other at the point where HðpÞ ¼ 1

2
.

An interesting observation is obtained if we continue to
ignore the issue of equivalence and apply the argument for
classical codes to the present problem. The number of
syndromes is D ¼ 2N�1 � 2N . Thus, if we demand that there
exist a sufficient number of syndromes to distinguish all the
errors, we have

2nHðpÞ < 2N : ð12Þ

On the square lattice, n ¼ 2N, and (12) leads to HðpÞ < 1
2
or

p < 0:1100 as a necessary condition for classical non-
degenerate error correction to be successful. This boundary
value HðpcÞ ¼ 1

2
happens to coincide with the conjecture on

the exact location of the multicritical point (separating the
ferromagnetic and paramagnetic phases on the NL) of the
�J Ising model on the square lattice, which agrees well with
numerical estimates (see refs. 2 and 3 and references
therein). Somewhat surprisingly, therefore, a naive argument
which ignores degeneracy nevertheless seems to give the

2704 J. Phys. Soc. Jpn., Vol. 73, No. 10, October, 2004 H. NISHIMORI and P. SOLLICH



correct value of the error threshold for the highly degenerate
toric code.1)

It is also interesting that the lower bound on the existence
of generic error-correctable CSS codes, if applied to the toric
code, coincides with the above result as pointed out by
DKLP:1) It is known that there exist CSS codes with critical
error probability pc and code rate R ¼ 1� 2HðpcÞ in the
asymptotic limit of large code size. Since the toric code has
R ! 0 asymptotically, one finds HðpcÞ ¼ 1

2
.

4.2 Lower bound (I)
Lower bounds are derived by slightly more elaborate

arguments. A loose lower bound is

CðpÞ �
2nHðpÞ

2N
: ð13Þ

The denominator on the right-hand side is the maximum
number of error patterns in an equivalence class, thus
leading to a smaller value than CðpÞ.

A stronger lower bound is given as

CðpÞ �
2nHðp0Þ

2N
; ð14Þ

where p0 is a function of p defined by

Egðp0Þ ¼ �nð1� 2pÞ ð15Þ

for sufficiently large N. Here Egðp0Þ is the ground-state
energy of the �J Ising model with a fraction p0 of negative
bonds in a typical configuration, i.e., one where the positive
and negative bonds are randomly distributed. To prove (14),
we first recall from above that the number of error patterns
for given p,

AðpÞ ¼
X
�

�
X
ðijÞ
�ij � Ep

 !
¼

n

np

� �
� 2nHðpÞ; ð16Þ

where Ep ¼ nð1� 2pÞ, is an overcount of the number of
equivalence classes because it ignores equivalence. Each
term in (16) should be divided by the number of error
patterns equivalent to � which contain the same number of
errors:

Bðp; �Þ ¼
1

2

X
�

�
X
ðijÞ
�ij�i�j � Ep

 !
: ð17Þ

The factor 1
2
comes from overall up-down symmetry [see

before (7)]. We therefore have

CðpÞ ¼
X
�

0

�
X
ðijÞ
�ij � Ep

 !

Bðp; �Þ
: ð18Þ

The prime in the sum indicates that terms with Bðp; �Þ ¼ 0

should be excluded. Applying a gauge transformation �ij !
�ij�i�j and averaging over the gauge variables f�ig gives, up
to an unimportant factor of 1

2
,

CðpÞ ¼
1

2N

X
�

0

X
�

�
X

�ij�i�j � Ep

� �
Bðp; �Þ

¼
1

2N

X
�

0 Bðp; �Þ
Bðp; �Þ

�
1

2N

X
�

�ðBðp; �ÞÞ;

ð19Þ

where �ðxÞ is 1 for x > 0 and 0 for x ¼ 0. This result is
intuitively clear: the final sum in (19) counts all error
patterns � for which an equivalent pattern with a fraction p

of errors exists. Every equivalence class contained in CðpÞ
thus contributes 2N�1 � 2N times to the sum, and the
prefactor compensates for this.

The lower bound (14) is now obtained by restricting the
sum in (19) to typical error patterns � with np0 errors (i.e.,
np0 negative �ij’s)

CðpÞ �
1

2N

X
�ðp0Þ

�ðBðp; �ÞÞ: ð20Þ

For a typical configuration � with np0 negative bonds,
Bðp; �Þ is almost always positive because the constraint on
the right-hand side of (17)X

ðijÞ
�ij�i�j � Ep ¼ 0 ð21Þ

is satisfied by a ground-state configuration of the �i, due to
the definition of p0 in (15). We therefore find

CðpÞ �
1

2N
n

np0

� �
� 2nHðp0Þ�N ð22Þ

which is the lower bound in (14).

4.3 Lower bound (II)
Another lower bound is obtained by restricting the sum in

(18) to typical bond configurations � with np negative bonds
(errors). Then Bðp; �Þ is—in spin glass terms—the number of
spin configurations with energy �Ep ¼ �nð1� 2pÞ for a
typical configuration � with np negative bonds, the logarithm
of which is the thermodynamic entropy on the NL:6,7)

Bðp; �Þ ¼ eSðp;�Þ: ð23Þ

Since � is a typical configuration, Sðp; �Þ does not depend on
the details of � for sufficiently large system size, so we
denote it as SðpÞ. Thus the denominator on the right-hand
side of (18) can be brought in front of the sum and we find

CðpÞ � e�SðpÞ
X
�ðpÞ

�
X
ðijÞ
�ij � Ep

 !
� 2nHðpÞ�SðpÞ= ln 2: ð24Þ

4.4 Behaviour of bounds
Our upper and lower bounds can be summarized as

max 2nHðpÞ�SðpÞ= ln 2; 2nHðp0Þ�N
� �

� CðpÞ � min 2N ; 2nHðpÞ� �
:

ð25Þ

This result is depicted in Fig. 6, where we are using for SðpÞ
an upper bound from our previous work.8) It is seen that CðpÞ
reaches its maximum value 2N at some p below 0:15 and
above 0:1100. This is because one of the lower bounds
2nHðp0Þ�N reaches the upper bound 2N at p close to 0:15. The
latter value was obtained by the relation nHðp0Þ � N ¼ N

(or p0 ¼ 1
2
) and using the numerical value of the ground-state

energy Egð12Þ ¼ �1:40N (see Fig. 7 for this value).
This saturation of the upper bound at an intermediate

value of p is not unnatural because CðpÞ is the number of
classes of equivalent error patterns, with all classes counted
with uniform weight. If we instead give appropriate
probability weights to various error patterns, and thence to
equivalence classes, we would reach a smaller value, the
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logarithm of which we denote by S�. Apart from a trivial
factor of ln 2, this quantity is nothing but the lower bound
2nHðpÞ�SðpÞ= ln 2 because the latter was derived by using typical
error configurations,

S� ¼ nHðpÞ ln 2� SðpÞ: ð26Þ

This S� is of course smaller than the maximum value of
lnCðpÞ and reaches its maximum only at p ¼ 1

2
.

It is instructive to derive (26) from a different argument.
Consider the probability weight of an error pattern � as given
in (4). The probability weight of the equivalence class �
containing this error pattern is then

P� ¼ ½pð1� pÞ�n=2Z0ðp; �Þ; ð27Þ

where Z0ðp; �Þ is the partition function (5) for the given p

(on the NL) and �. Then the information-theoretical entropy
of the probability distribution P� of equivalence classes is

S� ¼ �
X
�

P� lnP�; ð28Þ

which is equal to the information-theoretical entropy of
distribution of frustrated plaquettes in the �J Ising model.8,9)

Using (27) and the relation F ¼ �T lnZ ¼ E � TS with E ¼
�nð1� 2pÞ on the NL, it is possible to reduce this expression
to (26). To see this, (28) is first rewritten using (27) as

S� ¼ �
n

2
ln½pð1� pÞ� þ

E

T
� SðpÞ: ð29Þ

With E=T ¼ �nð1� 2pÞ 	 1
2
ln½ð1� pÞ=p� on the NL, we

easily recover (26).
We can summarize the difference between lnCðpÞ and S�

as follows. In lnCðpÞ we count (the logarithm of) the total
number of different equivalence classes � that can be
obtained for given p, i.e., that have P� > 0: lnCðpÞ thus
measures the size of the support of the distribution P�. On
the other hand, S� is the entropy of the distribution, and the
fact that it is smaller than lnCðpÞ indicates that the
distribution is strongly (i.e., exponentially narrowly) peaked
rather than uniformly spread over its support.

4.5 Lower bound on the ground-state energy
The inequality (25) implies the relation

nHðpÞ � nHðp0Þ � N: ð30Þ

If we regard p as a function of p0 through the definition
Egðp0Þ ¼ �nð1� 2pÞ, then the above inequality gives a
lower bound on pðp0Þ, or equivalently a lower bound on
Egðp0Þ. The result is shown in Fig. 7 together with numerical
estimates of Eg. Our lower bound is not particularly tight
numerically, e.g., EgðpÞ=N � �1:56 at p ¼ 1

2
whereas

numerically EgðpÞ=N is around �1:40. However, this result
has non-trivial significance because it is, as far as we know,
the first analytical lower bound on the ground-state energy of
the two-dimensional �J Ising model with general p.

5. Summary and Discussion

We have derived upper and lower bounds on the number
of equivalence classes of error patterns in the toric code. It
has been shown that this number saturates its upper bound at
an intermediate value of the error probability where we
expect no singularities in physical quantities. This appa-
rently non-conventional behaviour has been explained by
noting that the number of typically realized equivalence
classes, which is relevant for physical quantities, is signifi-
cantly smaller than the number of equivalence classes with
uniform weights given to all the cases. The logarithm of the
former number has been shown to be equal to the
information-theoretical entropy of the probability of error
classes, which is further related to the thermodynamic
entropy on the NL and therefore has a singularity (albeit a
weak one) at the multicritical point.

One of the upper bounds was compared with a lower
bound, the latter involving the ground-state energy of the �J

Ising model, leading to a lower bound on the ground-state
energy of this spin glass model. Although the resulting value

0 0.1 0.2 0.3 0.4 0.5
p

0

0.5

1

N
–1

lo
g

2
C

(p
)

2H(p) 2H(p)–S+(p)/(N ln 2)

2H(p0)–1

Fig. 6. Upper and lower bounds of CðpÞ from (25), plotted as bounds on

N�1 log2 CðpÞ. Solid lines give the upper bounds, 1 and 2HðpÞ, and

dashed lines the lower ones, 2HðpÞ � SðpÞ=ðN ln 2Þ and 2Hðp0Þ � 1.

Because SðpÞ is not known exactly, we replace it by a upper bound SþðpÞ
from our previous study.8) To sketch 2Hðp0Þ � 1, a rough fit was made to

the numerical data in Fig. 7 to obtain pðp0Þ and from there the inverse

relation p0ðpÞ.

0 0.1 0.2 0.3 0.4 0.5
p

 –2

 –1.8

 –1.6

 –1.4

Eg /N

L = 40
L = 50
L = 60
Lower bound

Fig. 7. Ground-state energy of the two-dimensional �J spin glass. Shown

is the lower bound resulting from (30), compared with numerical results

for linear system sizes L ¼ 40, 50 and 60. The latter were obtained by

averaging over 10, 15 and 5 numerical realizations of the disorder,

respectively; error bars are smaller than the symbol sizes. All numerical

calculations were run on the spin glass ground state server.10)
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of the lower bound is not necessarily impressive numeri-
cally, it is interesting that bounds on the number of
equivalence classes of the toric code lead in a simple
manner to a bound on the ground-state energy of a spin
glass. The correspondence between the two problems was
proposed by DKLP,1) and we have exploited it here to derive
an explicit result on a physical quantity.

The present work would serve as a starting point for
further developments based on the correspondence of two
completely different problems. For example, an improved
upper bound for CðpÞ will lead to a better lower bound on
the ground-state energy. Improvements of the lower bound
of CðpÞ may also be possible, but one should remember that
such a result may not lead to an improved bound on the
ground-state energy unless the obtained lower bound of CðpÞ
is related to the latter quantity.
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