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Abstract. Zeros of the nth moment of the partition function [Zn] are investigated in

a vanishing temperature limit β → ∞, n → 0 keeping y = βn ∼ O(1). In this limit, the

moment parameterized by y characterizes the distribution of the ground-state energy.

We numerically investigate the zeros for ±J Ising spin glass models with several ladder

and tree systems, which can be carried out with a feasible computational cost by a

symbolic operation based on the Bethe–Peierls method. For several tree systems we

find that the zeros tend to approach the real axis of y in the thermodynamic limit

implying that the moment cannot be described by a single analytic function of y as

the system size tends to infinity, which may be associated with breaking of the replica

symmetry. However, examination of the analytical properties of the moment function

and assessment of the spin-glass susceptibility indicate that the breaking of analyticity

is relevant to neither one-step or full replica symmetry breaking.
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1. Introduction

Spin glasses are a typical example of disordered systems and have been investigated for

a long time [1]. The first comprehensive understanding of spin glasses was obtained

by investigating the so-called SK model introduced by Sherrington and Kirkpatrick

[2], which describes fully connected Ising spin glasses. In analyzing this model, they

employed the replica method under the replica symmetric (RS) ansatz. However, the

SK solution contains an inconsistency in that the entropy at low temperatures becomes

negative. This problem has led to much controversy regarding the validity of the replica

method. In 1980, Parisi developed the replica symmetry breaking (RSB) scheme [3, 4]

and showed that a sufficient solution can be obtained within the framework of the replica

method.

Although Parisi’s RSB scheme is consistent at low temperatures, a mathematical

justification of the replica method and a proof of the Parisi scheme were lacking until a

recent study showed that the Parisi’s solution is exact for the SK model [5]. However,

this does not resolve all of the questions regarding the replica method. There are still

many unsolved issues, e.g. ultrametricity and the origin of the RSB. These issues have

attracted renewed interest as applications of the the replica method have increased

rapidly [6, 7, 8, 9], and a deeper understanding of this method is greatly desired.

The RSB is considered to relate to the analyticity of a generating function g(n)

defined as follows:

g(n) ≡ lim
N→∞

gN(n), (1)

gN(n) ≡ 1

N
log[Zn], (2)

where n is referred to as the replica number and the brackets [· · ·] denote the average

over the quenched randomness. The functions gN(n) and g(n) are defined for ∀n ∈ R

(or ∈ C) and the free energy is derived from gN(n) as

f = − lim
N→∞

1

βN
[logZ] = − lim

N→∞
lim
n→0

1

nβ
gN(n). (3)

The name ‘replica method’ is often used to indicate the second identity, though this

method should be considered as a systematic procedure to evaluate eqs. (1) and (2).

In general, the calculation of [Zn] is difficult for real n ∈ R (or complex C). To

overcome this difficulty, the replica method first computes [Zn] for natural numbers

n = 1, 2, · · · ∈ N, then extends the obtained expressions of [Zn] to n ∈ R by their

analytical continuation. However, this technique causes the following two problems. The

first concerns the uniqueness of the analytical continuation from natural to real numbers.

Even if all the moments of [Zn] are given for n ∈ N, in general it is impossible to uniquely

continue the analytical expressions for n ∈ N to n ∈ R (or C). Carlson’s theorem

guarantees that the analytical continuation from n ∈ N to n ∈ C is uniquely determined

if [Zn]1/N < O(eπ|n|) holds as Re(n) tends to infinity [10]. Unfortunately, the moments

of the SK model grow as [Zn]1/N < O(eC|n|2), where C is a constant, and therefore
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this sufficient condition is not satisfied. van Hemmen and Palmer conjectured that the

failure of the RS solution of the SK model might be related to this issue, though further

exploration in this direction is technically difficult [11]. The second issue concerns the

possible breaking of the analyticity of g(n). In general, even if gN(n) is guaranteed to be

analytic with respect to n for finite N , the analyticity of g(n) = limN→∞ gN(n) can be

broken. Since it is unfeasible to exactly compute [Zn] except for a few solvable models,

in most cases, only the asymptotic behavior is investigated by using certain techniques

such as the saddle-point method in the limit N → ∞. This implies that, in such cases,

the expression analytically continued from n ∈ N to n ∈ R in the limit N → ∞ will

lead to an incorrect solution for n→ 0 if the breaking of analyticity occurs in the region

0 < n < 1. Recently, it has been shown that analyticity breaking does occur and is

relevant to one-step RSB (1RSB) for a variation of discretely random energy models

[12, 13, 14, 15], for which the uniqueness of the analytical continuation is guaranteed by

Carlson’s theorem and for which [Zn] or equivalently gN(n) can be assessed in a feasible

manner without using the replica method for finite N and n ∈ C. This is a strong

motivation to investigate the analyticity of [Zn] for various systems to explore possible

links to different types of RSB.

Under this motivation, we investigate possible scenarios of analyticity breaking of

g(n) = limN→∞ gN(n). For this purpose, we observe the zeros of [Zn], which will be

referred to as “replica zeros” (RZs), on the complex plane n ∈ C for finite N and

examine how some sequences of zeros approach the real axis as N tends to infinity.

For the discrete random energy model mentioned above, this strategy successfully

characterizes an RSB accompanied by a singularity of a large deviation rate function

with respect to N−1 logZ [16]. As other tractable example systems, we investigate ±J
models with a symmetric distribution on two types of lattices, ladder systems and Cayley

trees (CTs) with random fields on the boundary. There are two reasons for using these

models: Firstly, these models can be investigated in a feasible computational time by the

Bethe–Peierls (BP) approach [17]. Especially, at zero temperature this approach gives a

simple iterative formula to yield the partition function. Employing the replica method

and the BP formula, we can perform symbolic calculations of the replicated partition

function [Zn], which enables us to directly solve the equation of the RZs [Zn] = 0. The

second reason is the existence of the spin-glass phase. It is known that the spin-glass

phase is present for CTs [18, 19, 20, 21] and is absent for ladder systems. Therefore,

we can compare the behavior of RZs, which are considered to be dependent on the

spin-glass ordering.

This paper consists of five sections. In the next section, we give an explanation

of our formalism. Simple recursive equations to calculate [Zn] are derived in a zero-

temperature limit by combining the BP approach and the replica method. The

relationships of CTs to Bethe lattices (BLs) and regular random graphs (RRGs) are

also argued. Assessing the contribution from the boundary indicates that 1RSB does

not occur in CTs and BLs while it does for RRGs in the thermodynamic limit when the

boundary contribution is correctly taken into account, which is the case in the evaluation
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of RZs. This implies that the possible RZs of a CT are irrelevant to 1RSB. In sec. 3,

we present plots of RZs and investigate their behavior. Their physical significance is

also discussed. In sec. 4, a possible link to another type of RSB, the full RSB (FRSB),

is examined. Numerical assessment of the de Almeida–Thouless (AT) condition based

on the divergence of spin-glass susceptibility, however, indicates that RZs do not reflect

FRSB, either. Therefore, we conclude that the analyticity breaking that occurs in CTs

is irrelevant to RSB. The final section is devoted to a summary.

2. Formulation

In this section, the main ideas of the paper are presented. It is shown that the RZ

equation [Zn] = 0 is simplified at zero temperature. An algorithm to evaluate the

generalized moment [Zn] for n ∈ C is developed by introducing the replica method to

the BP approach.

2.1. Equation of the replica zeros at zero temperature

Solving

[Zn] = 0 (4)

with respect to n is our main objective. Unfortunately, this is, in general, a hard

task even by numerical methods because eq. (4) is transcendental and becomes highly

complicated as the system size N grows. In the T → 0 limit, however, the main

contributions to the partition function come from the ground state and eq. (4) becomes

[Zn] ≈ [dn
ge

−βnEg ] = 0, (5)

where Eg is the energy of the ground state and dg is the degeneracy. If n is finite

when β → ∞, the term e−βnEg diverges or vanishes and there is no meaningful result.

Therefore, we suppose that non-trivial solutions exist only in the limit n → 0, β → ∞,

and y = βn ∼ O(1). This assumption is consistent with the fact that the solution of

the SK model is well-defined in this limit [22]. Under this condition, eq. (5) becomes

[e−yEg ] = 0. (6)

In the following, we focus on the ±J model whose Hamiltonian is given by

H = −
∑

〈i,j〉

JijSiSj, (7)

and the distribution of interactions is

P (Jij) =
1

2
δ(Jij − 1) +

1

2
δ(Jij + 1), (8)

assuming that the total number, NB, of interacting spin pairs 〈i, j〉 is proportional to N ,

which is the case for ladder systems and CTs. This limitation restricts the energy of any

state to an integer value. As a result, eq. (6) can always be expressed as a polynomial

of x = ey, which significantly reduces the numerical cost for searching for RZs.
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2.2. The Bethe–Peierls approach

2.2.1. General formula On cycle free graphs, it is possible to assess the partition

function by an iterative method, i.e. the BP approach. We here present a brief review of

the procedure for CTs. The BP approach in ladder systems is presented in Appendix A.

The basis for our analysis is a formula for evaluating an effective field by a partial

trace:
∑

Sj

exp {β(JijSiSj + hjSj)} = A exp(βhiSi). (9)

A simple algebra offers

hi = ĥj , A =
2 cosh βJij cosh βhj

cosh βĥj

, (10)

where

βĥj = tanh−1(tanhβJij tanh βhj). (11)

The fields hi and ĥi are sometimes termed the cavity field and cavity bias, respectively.

For CTs, iterating the above equations from the boundary gives the series of cavity

fields and biases {hi, ĥi}. In general, a cavity field becomes a summation of the cavity

biases from its c− 1 descendants (c is the coordination number):

hi =
c−1∑

j=1

ĥj. (12)

Hereafter, we mainly focus on the c = 3 case, as shown in fig. 1, but the extension

to general coordination numbers is straightforward. In addition, generalizing to k-spin

interacting CTs (k-CTs) is also straightforward; the only necessity is to replace the

partial trace (9) with that for a k-spin interaction, as

∑

S1,S2

exp

{
β

(
SiJk

k−1∏

j=1

Sj +
k∑

j=1

hjSj

)}
= A exp(βhiSi), (13)

where

hi = ĥk, A =
2k−1 cosh βJk

∏k−1
j=1 cosh βhj

cosh βĥk

, (14)

ĥk =
1

β
tanh−1

(
tanh βJk

k−1∏

j=1

tanhβhj

)
. (15)

Let us denote the partition function in the absence of i’s ascendants as Zi.

Equations (9)–(12) imply that the partition function is updated as

Zi =
∑

Si,Sj ,Sk

ZjZk exp{−β(∆Hij + ∆Hik)}ρj(Sj, hj)ρk(Sk, hk), (16)

where

ρj(Sj) =
exp(βhjSj)

2 cosh βhj
, (17)
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Figure 1. Local structure of a CT with coordination number c = 3.

is the one-site marginal in the absence of j’s ascendants and ∆Hij = −JijSiSj is the

bond Hamiltonian added by a propagation procedure.

As a final step, the contribution from the origin of the tree is calculated as

Z = Z1Z2Z3

3∏

i=1

(2 cosh βJi)

×
(

1 + tanh βJ1 tanh βJ2 tanhβh1 tanh βh2 + (two terms with 1, 2, 3 rotated)

4

)
, (18)

and the whole partition function Z is derived. Taking the T → 0 limit yields the

ground-state energy for a given bond configuration. In this limit, eqs. (11) and (16)

become

ĥj → sgn(Jijhj) min(|Jij|, |hj|), (19)

and

lim
β→∞

− 1

β
logZi = Ei

= Ej + Ek − Jij − Jik +

{
0 ( sgn(JijJikhjhk) ≥ 0 )

2 min(|Jij|, |Jik|, |hj|, |hk|) ( otherwise )
. (20)

We assume sgn(0) ≡ 0 in this paper.

2.2.2. Use of the replica method For a given single sample of interactions and boundary

conditions, a simple application of the BP algorithm enables us to evaluate the partition

function in a feasible computational time. Unfortunately, this does not fully resolve the

problem of the computational cost for assessing the moments (4) since the cost for

evaluating an average over all possible samples of interactions and boundary conditions

grows exponentially with respect to the number of spins. However, this difficulty can be

overcome by analytically assessing the configurational average for n ∈ N and analytically

continuing the obtained expressions to n ∈ C in the level of the algorithm, a method

which may be considered a generalization of the replica method.

For this purpose, we first evaluate the nth moment of the partition function Z

Ξ(n) ≡ [Zn] = Tr
∏

〈i,j〉

[exp(βJij

n∑

α

Sα
i S

α
j )], (21)
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for n ∈ N, where α is the replica index. Let us denote the effective Hamiltonian as

Heff =
∑

〈i,j〉

Hij =
∑

〈i,j〉

− 1

β
log[exp(βJij

∑

α

Sα
i S

α
j )], (22)

where [· · ·] stands for the configurational average with respect to the interactions {Jij}.
This means that eq. (21) is simply the partition function of an n-replicated system,

which is defined on a cycle free graph and is free from quenched randomness. Therefore,

by expressing the BP algorithm in the current case as

Ξi(n) =
∑

Si,Sj ,Sk

[
exp

{
β(Jij

n∑

α

Sα
i S

α
j + Jik

n∑

α

Sα
i S

α
k )

}]
ρjρkΞj(n)Ξk(n) (23)

=
∑

Si

ρi(Si)Ξi(n), (24)

where ρi is the one-site marginal distribution of site i, eq. (21) can be assessed in a

feasible time. The expressions (23) and (24) define the updating rules of ρi and Ξi(n).

So far, we have made no assumptions or approximations and therefore eq. (24)

yields exact assessments for n ∈ N, given a boundary condition. To generalize this

scheme to n ∈ C, we here introduce the RS ansatz, which is the second step of the

replica method and, in general, is expressed by a restriction of the functional form of

ρi(Si) as

ρi(Si) =

∫
πi(h)

n∏

α=1

(
1 + tanh(βh)Sα

i

2

)
dh =

∫
πi(h)

eβh
P

α Sα
i

(2 cosh βh)n
dh, (25)

where πi(h) is a distribution to be updated in the algorithm. The expression of eq.

(25) guarantees that ρi(Si) is invariant under any permutation of the replica indices

α = 1, 2, . . . , n. Note that this property is automatically satisfied over all of the objective

lattice if only the distributions on the boundary are expressed in the form of eq. (25).

Inserting eq. (25) into eq. (24) and performing some simple algebraic steps gives

Ξi =
∑

Si

ΞjΞk(2 cosh β)2n

∫
dhi

eβhi

P

α Sα
i

(2 cosh βhi)n

{∫∫
πj(hj)πk(hk)

×
[
δ(hi − ĥj − ĥk)

(
2 coshβhi

2 cosh βĥj2 cosh βĥk

)n]
dhjdhk

}
(26)

=
∑

Si

∫
dhiπi(hi)

eβhi

P

α Sα
i

(2 cosh βhi)n
Ξi. (27)

Equations (26) and (27) provide an expression of the replica symmetric BP algorithm:

πi(hi) ∝
∫∫

πj(hj)πk(hk)

[
δ(hi − ĥj − ĥk)

(
2 cosh βhi

2 cosh βĥj2 cosh βĥk

)n]
dhjdhk,(28)

Ξi = ΞjΞk(2 cosh β)2n

∫∫
dhjdhk πj(hj)πk(hk)

[(
2 coshβ(ĥj + ĥk)

2 cosh βĥj2 cosh βĥk

)n]
, (29)
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which is applicable to ∀n ∈ C. When the algorithm reaches the origin of the CT, the

moment of eq. (21) is assessed as

Ξ(n) = [Zn] = Ξ1Ξ2Ξ3(2 cosh β)3n

∫∫∫
dh1dh2dh3 π1(h1)π2(h2)π3(h3)

×
[(

1 + tanh βJ1 tanhβJ2 tanh βh1 tanh βh2 +R

4

)n]
, (30)

where R is two terms with the indices 1, 2, 3 rotated.

2.2.3. Zero-temperature limit Under appropriate boundary conditions, the zero-

temperature limit β → ∞, n → 0 keeping y = βn finite, which we focus on in the

present paper, yields further simplified expressions of the BP algorithm. For this, we

generate replicated spins of each site on the boundary with an identical random external

field hi = ±1, the sign of which is determined with an equal probability of 1/2. This

yields the cavity field distribution

πi(hi) =
1

2
(δ(hi − 1) + δ(hi + 1)) (31)

and the partition function

Ξi = (2 cosh β)n → ey, (32)

as the boundary condition. The relevance of the boundary condition to the current

objective systems is discussed later.

Equation (31) in conjunction with the property |Jij | = 1 allows πi(hi) in eq. (28)

to be expressed without loss of generality as

πi(hi) = pi;0δ(hi) +

c−1∑

f=1

pi;f (δ(hi − f) + δ(hi + f)) , (33)

where pi = (pi;0, pi;1, . . . , pi;c−1) represents a probability vector satisfying pi;0 +

2
∑c−1

f=1 pi;f = 1 and pi;f ≥ 0 (f = 0, 1, . . . , c − 1), and is to be determined from the

descendent distributions. It is noteworthy that the symmetry ρi(Si) = ρi(−Si) on the

boundary condition also restricts πi(hi) to a symmetric function of the form of eq. (33),

regardless of the value of pJ in the distribution of interactions (8).

After the configurational average is performed, the cavity-field distribution πi(hi)

depends only on the distance, g, from the boundary. Therefore, we hereafter denote

πi(hi) as πg(hi) and represent the distance of the origin from the boundary as g = L.

The BP scheme assesses pg+1 using its descendents pg. However, the only part relevant

to the assessment of Ξ(n) is that for pg;0, which is represented as

pg+1;0 =
p2

g;0 + 2
(

1−pg;0

2

)2

e−2y

1 − 2
(

1−pg;0

2

)2

(1 − e−2y)
, (34)

for the c = 3 case, being accompanied by an update of the partition function

Ξg+1 = Ξ2
ge

2y

{
1 − 2(1 − e−2y)

(
1 − pg;0

2

)2
}
, (35)
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and similarly for a general c. After evaluating pg;0 and Ξg using this algorithm up to

g = L − 1, the full partition function, Ξ(y), in the current limit n → 0 and β → ∞
keeping y = nβ ∼ O(1) is finally assessed as

Ξ(y) = ΞL = Ξ3
L−1e

3y

{
1 − 3(1 − e−2y)

(
1 − pL−1;0

2

)2

(1 + pL−1;0)

}
. (36)

For ∀y ∈ C and reasonable sizes of L, eqs. (34)–(36) can be performed in a feasible

computational time and therefore offer a useful scheme for examining RZs. This is the

main result of the present paper.

2.3. Remarks

Before proceeding further, there are several issues to be noted.

2.3.1. Uniqueness of the analytical continuation As already mentioned, analytical

continuation from n ∈ N to n ∈ C cannot be determined uniquely in general systems.

However, in the present system, we can show the uniqueness of the continuation.

Therefore, the RS solution assumed above is correct.

For this, let us consider the modified moment [(Ze−βNB)n]1/N , where NB is the total

number of bonds. This quantity satisfies the inequality
∣∣∣
[(
Ze−βNB

)n]1/N
∣∣∣ ≤

[(
Ze−βNB

)Re(n)
]1/N

≤
[
(Tr 1)Re(n)

]1/N

= 2Re(n) < O(eπ|n|), (37)

for finite N . Suppose that we have an analytic function ψ(n;N) that satisfies the

condition |ψ(n;N)| < O(eπ|n|). Carlson’s theorem guarantees that if the equality

|ψ(n;N)− [(Ze−βNB )n]1/N | = 0 holds for ∀n ∈ N, ψ(n;N) is identical to [(Ze−βNB)n]1/N

for ∀n ∈ C. Because e−βNB is a non-vanishing constant, this means that the

analytic continuation of [Zn]1/N is uniquely determined. This indicates that expressions

analytically continued under the RS ansatz, namely eqs. (30) and (36), are correct for

finite N (or equivalently, finite L) although the analyticity may be broken on the real

axis in the limit N → ∞.

2.3.2. Relationship to other systems In addition to examining RZs for finite CTs and

ladder systems, the relevance of RZs to the large system size limit will also be argued by

comparison with known thermodynamic properties of relatives of CTs, namely Bethe

lattices and regular random graphs. These are sometimes identified with CTs because

the fixed point condition of the BP method is represented identically. However, we

here strictly distinguish them. The definitions and properties of these systems are

summarized as follows:

• The Cayley tree (CT): A tree of finite size consisting of an origin and its neighbors.

The first generation is built from c neighbors which are connected to the origin.
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Each site in the nth generation is connected to new c− 1 sites without overlap and

all these new sites comprise the n+ 1th generation. Iterating this procedure to the

Lth generation, we obtain the CT, and the Lth generation becomes its boundary.

For the boundary condition of eq. (31), which implies p0;0 = 0 in the expression

of eq. (34), Ξ(n) of this lattice is represented as a polynomial of x = e−y, which

can be assessed by symbolic operations using eqs. (34)–(36) without evaluating the

values of Ξ(n). This property is very useful for investigating RZs.

• The Bethe lattice (BL): A lattice consisting of the first L′ generations of a CT, for

which L → ∞ is taken. Alternatively, we can define a BL as a finite CT of L′

generation, the boundary condition of which is given by the convergent cavity field

distribution of the infinite CT. Unlike for a CT, the boundary condition depends

on y for a BL. Due to this difference, Ξ(n) of this lattice cannot be represented as a

polynomial and searching RZs becomes non-trivial. However, assessing the values

of Ξ(n) is still feasible computationally.

• The regular random graph (RRG): A randomly generated graph under the

constraint of a fixed connectivity c. Since there exist many cycles, assessing

Ξ(n) and RZs for this lattice is not feasible computationally for finite N . In

the limit N → ∞ under appropriate conditions, however, it is considered that

the RRG and the BL share many identical properties. Therefore, this lattice is

sometimes identified with the BL and regarded as a solvable system [23, 24, 25, 26].

Nevertheless, we here distinguish between the two systems because the main

purpose of this paper is to clarify the asymptotic properties of gN(n) from finite N

to infinite N , and our definition of the BL is useful to compare these limits. Here,

the terminology “RRG” is used only to refer to systems of infinite size.

2.3.3. Relevance of the boundary condition to the moment of the partition function The

above mentioned distinction between the three relatives of CTs yields differences in the

expression of the moment of the partition function, even while they share an identical

cavity field distribution in the limit N → ∞.

Equations (34)–(36) imply that gN(y) = N−1 log Ξ(y) for CTs is generally expressed

as

gN(y) =
1

N

∑

〈ij〉

g
(2)
〈ij〉(y) −

1

N

∑

i

(ci − 1)g
(1)
i (y) +

1

N

∑

µ

gµ(y), (38)

where g
(2)
〈ij〉(y) and g

(1)
i (y) denote the contributions from the bond 〈ij〉 and the site i,

respectively, and ci is the number of bonds that site i has. The last term gµ(y) is the

contribution due to the boundary fields.

This is considered a generalization of a well-known property of free energies for

cycle free graphs [27, 28, 29]. For regular CTs, ci = c holds if i is placed inside the tree,

while ci = 1 for the boundary sites.

For a BL, the boundary condition given by the convergent solution of eq. (34), p∗,
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which becomes a function of y, particularly simplifies the expression of eq. (38) as

gBL
N (y) = rIgI(y) + rBgB(y). (39)

Here, rI =
(
1 + c(c− 2)−1

(
(c− 1)L′−1 − 1

))
/
(
1 + c(c− 2)−1

(
(c− 1)L′ − 1

))
and rB =

1− rI represent the fractions of the number of sites inside the tree and on the boundary,

respectively, and

gI(y) =
c

2
g(2)(y) − (c− 1)g(1)(y), (40)

and

gB(y) =
c

2
g(2)(y) + gµ(y), (41)

represent contributions from a single site inside the tree and on the boundary. In general,

g(2)(y) and g(1)(y) are expressed as

g(2)(y) = log
{
Tr
[
ρ̂(S1)

c−1ρ̂(S2)
c−1eβJ

P

α Sα
1 Sα

2

]}
, (42)

g(1)(y) = log {Tr ρ̂(S)c} , (43)

where

ρ̂(S) =

∫
dĥπ̂(ĥ)

eβbh
P

α Sα

(2 coshβĥ)n
(44)

and π̂(ĥ) is the distribution of the cavity bias, which is related to π(h) as

π̂(ĥ) =

∫
dhπ(h)

[
δ

(
ĥ− 1

β
tanh−1(tanh βJ tanh βh)

)]
. (45)

For c = 3 in the limit βn→ y, we have

g(2)(y) = log ey

(
1 − 1

2
(1 − e−2y)(1 − p∗)

2

)3

, (46)

g(1)(y) = log

(
1 − 3

4
(1 − e−2y)(1 − p∗)

2(1 + p∗)

)
, (47)

gµ(y) = g0 − log

(
1 − 1

2
(1 − e−2y)(1 − p∗)

2

)
, (48)

where g0 = log
∫
dhP (h)(2 coshβh)n is the contribution from a boundary spin and

P (h) is the boundary-field distribution of the BL determined satisfying the condition

π(0) = P (0)/(
∫
P (h)(2 coshβh)n) = p∗.

Equation (39) represents a distinctive feature of cycle free graphs. In most

systems, the contribution from the boundary becomes negligible as the system size

N tends to infinity. However, eq. (39) indicates that such a contribution does not

vanish for a BL since rB → (c − 2)/(c − 1) remains of the order of unity even

if N = 1 + c(c − 2)−1
(
(c− 1)L′ − 1

)
becomes infinite. Nevertheless, the complete

separation of contributions between the inside and the boundary in this equation implies

that it is physically plausible to use gI(y), instead of gBL
N (y), in handling problems

concerning the bulk part of the objective graph. Actually, such a replacement has been

adopted in several studies on cycle free graphs [24, 30]. In general, gI(y) agree with g(y)

of an RRG, which provides the basis of the correspondence between BLs and RRGs.
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In spin-glass problems on cycle free graphs, the replacement of gBL
N (y) with gI(y)

is crucial. To see this, we here investigate the large deviation properties of [Zn]. We

denote the boundary condition as PB(h) =
∏

i∈boundary πi(hi). Equation (6) implies that

Ξ(y) is expressed as Ξ(y) =
∫
dhPB(h) exp (−yEg(h)), where Eg(h) is the ground state

energy when h is imposed on the boundary. For general systems, including a BL, this

yields the identity

y2(∂/∂y)
(
y−1gN(y)

)
= N−1D(P̃B|PB) ≥ 0, (49)

where P̃B(h) = PB(h) exp (−yEg(h)) /Ξ(y) and D(P̃B|PB) is the Kullback–Leibler

(KL) divergence between P̃B(h) and PB(h). An implication of this relation from

large deviation statistics is that the probability P (f) that Eg(h)/N equals f scales as

P (f) ≃ exp (NΣN (f)) for largeN , where f and ΣN (f) are related by f = −(∂/∂y)gN (y)

and ΣN (f) = −y2(∂/∂y) (y−1gN(y)) parameterized by y. The non-negativity of the KL

divergence indicates that the rate function ΣN (f) cannot be positive, which guarantees

the normalization constraint
∫
dfP (f) = 1.

The constraint ΣN(f) ≤ 0 is always satisfied even when N → ∞. However, this is

not necessarily the case when we take the thermodynamic limit limN→∞ gN(y) = g(y)

and then calculate the rate function as Σ(y) = −y2(∂/∂y) (y−1g(y)). This function

Σ(f) can be positive, and it can be shown that the condition Σ(fs) = 0 signals the

onset of 1RSB [12, 31]. The positive part of Σ(f) can be formally interpreted as the

complexity or the configurational entropy of the metastable states for a single typical

sample of couplings in the conventional 1RSB framework [32], as shown in fig. 2. In

the 1RSB framework, the critical condition Σ(fs) = 0, which is alternatively expressed

as (∂/∂y) (y−1g(y)) |y=ys
= 0 in general, corresponds to the typical state realized in

equilibrium.

The condition Σ(fs) = 0 has already been investigated for RRGs and indicates

that 1RSB transitions occur for some types of RRGs [24, 26]. However, it is considered

that such a symmetry breaking cannot be detected by an investigation based on eqs.

(34)–(36) because the boundary contribution is inevitably taken into account for a BL

as well as for a CT. Actually, direct verification of Σ(f) ≤ 0 is possible for the c = 3

case; details are shown in Appendix C. This indicates that the possible RZs provided

by the current scheme are irrelevant to 1RSB.

3. Results

3.1. Plots of the replica zeros

We first consider the results for ladder systems. Figure 3 shows plots of RZs for a 2×L

ladder with the boundary condition p0;0 = 0 and Ξ0 = x. It can be mathematically

proven that all the RZs lie on a line Im(y) = π/2, as detailed in Appendix B. This

indicates that the generating function gN(n) is analytic with respect to real y even for

the N → ∞ limit. We have also investigated a 3 × L ladder and found qualitatively

similar results as for the width-2 case. For a width-4 ladder, a RZ plot is given in fig.
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β

β

Σ( )

Figure 2. Schematic diagram of Σ(f) assessed using gI(y). The rate function is

continued to the complexity at f = fs and the 1RSB occurs at this point. The

complexity vanishes at f = fd where the monotonicity of the free energy with respect

to y = βn breaks down.
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[y

]
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L=40
L=60
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L=100

Figure 3. RZs for ladders with

2 × L. All the zeros lie on

Im(y) = π/2 and never reach the

real axis of y = βn. The inequality

Re(y) ≤ log 2
√

2 holds, as shown in

Appendix B.

 0.0

 0.5

 1.0

 1.5

 2.0

-1.5 -1.0 -0.5  0.0  0.5  1.0  1.5

Im
[y

]

Re[y]

L=2
L=4
L=6
L=8

L=10

Figure 4. Zeros of width-

4 ladders. Some of the zeros

approach the real axis around

Re(y) ≈ 1.2, but the rate of

approach rapidly decreases as L

grows.

4. We can observe that some zeros approach the real axis around Re(y) ≈ 1.2, but

the rate of approach decreases rapidly as L grows. This implies that the RZs do not

reach the real axis, which agrees with a naive speculation that ladders are essentially

one-dimensional systems and therefore do not involve any phase transitions as long as

the width is kept finite.

The plots for a CT and for a 3-CT with c = 3 are shown in figs. 5 and 6,

respectively. Note that 1RSB occurs in RRGs with the same parameters. The critical
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Figure 5. Plot of RZs for a CT

with c = 3. All the zeros lie on the

line Im(y) = π/2, as for a 2 × L

ladder.

 0.0
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 2.0

-0.6 -0.4 -0.2  0.0  0.2  0.4  0.6  0.8  1.0  1.2

Im
[y
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Figure 6. RZs plot for a 3-CT

with c = 3. A sequence of zeros

approaches the real axis as the

number of generations L increases.

The arrow indicates the collision

point expected from the study of

the L → ∞ limit in sec. 3.2.

values are ys = 0.41741 and ∞ for the RRG counterparts of a CT and 3-CT with c = 3,

respectively.

Figure 5 indicates that RZs of the c = 3 CT are similar to that of a width-2 ladder.

This indicates that there is no phase transition or breaking of analyticity of g(n) with

respect to real y. This is in accordance with the argument on the boundary contribution

mentioned in the previous section.

On the other hand, for the 3-CT case in fig. 6, a sequence of RZs approaches a point

yc on the real axis from the line Im(y) = π/2 as the number of generations L increases,

although the value of yc is far from ys = ∞. A similar tendency is also observed for a

CT and 3-CT with c = 4, plots of which are presented in figs. 7 and 8, respectively.

The 1RSB critical values are ys = 0.38926 for the CT and ys = 1.41152 for the 3-CT.

Again, these values are far from the values of yc, which can be observed in figs. 7 and 8.

These results indicate that certain phase transitions occur for some CTs, although

they are irrelevant to 1RSB. It is difficult to identify the critical value yc from the plots

because of the computational limits. Instead, in the following subsection we investigate

the L → ∞ limit of these models. The arrows in figs. 6–8 represent the transition

points yc determined by this investigation.

3.2. Phase transition on the boundary of a BL

In order to identify the value of yc, we take the limit L→ ∞ by equating pg+1;0 and pg;0

in the iterative equation of pg;0, which yields the boundary condition p∗ of the BL. For
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Figure 7. RZs of a CT with

c = 4. We consider only an

L-generation branch in this case

because of computational limits.

RZs approach the real axis as L

increases around yc ≈ 0.5. The

arrow indicates the location of

the singularity of the cavity-field

distribution.
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Figure 8. RZs of a 3-CT with

c = 4. We consider only an

L-generation branch. The zeros

approach the real axis around yc ≈
1.1. There are two singular points

of the cavity field distribution

in this case, both of which are

indicated by arrows.

a c = 3 3-CT, the iterative equation is given by

pg+1;0 =

{
p2

g;0 + 2pg;0(1 − pg;0)
}2

+ 1
2
e−2y(1 − pg;0)

4

1 − 1
2
(1 − pg;0)4(1 − e−2y)

. (50)

A return map of the recursion of pg;0 and the convergent solution p∗ are presented in

figs. 9 and 10, respectively. The return map shows that there are three fixed points for

x >∼ 2.35, while p = 1 is the only fixed point for x <∼ 2.35. This situation is in contrast

to the c = 3 CT case, in which the cavity-field distribution uniformly converges to an

analytic function:

p∗ =
2 + x2 −

√
x4 + 8x2

2(1 − x2)
, (51)

which can be derived from eq. (34). This implies that when eq. (31) is put on the

boundary of the CT, the boundary condition of the BL, which was obtained by an

infinite number of recursions L − L′ → ∞, exhibits a discontinuous transition from

p∗ < 1 to p∗ = 1 at x ≈ 2.35 ⇔ yc ≈ 0.85 as y is reduced from the above. Actually, in

fig. 6, RZs of the c = 3 3-CT seem to approach yc ≈ 0.85, marked by an arrow. This

indicates that RZs obtained by our framework are relevant to the phase transition of

the boundary of a BL, which is not related to 1RSB.

The same analysis for a c = 4 CT shows that bifurcation of another type can occur

for even c. For this model, the recursive equation of pg;0 has a trivial solution p∗ = 0

for ∀x, which is always the case when c− 1 is odd. The return map and plots of p∗ are

shown in figs. 11 and 12, respectively.
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1.0

Figure 9. Return map of a 3-CT

with c = 3. The convergent point

of the recursion discontinuously

changes depending on x. The solid

line represents the function f(p) =

p.

0 1 2 3 4
x0.0
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0.4

0.6

0.8

1.0
p

Figure 10. Asymptotic behavior

of pg;0 of a 3-CT with c = 3. A

finite jump of p occurs at x ≈ 2.35.

The solid line denotes the  L → ∞
solution p∗.
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1.0

Figure 11. Return map of a CT

with c = 4. The stable fixed point

is unique but shows a singularity at

x = ey =
√

3.

1 2 3 4
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0
p

Figure 12. Asymptotic behavior

of pg;0 of a CT with c = 4.

In the thermodynamic limit, pg;0

is continuous but the derivative

becomes discontinuous at x =
√

3.

These figures indicate that there exists a continuous transition from p∗ = 0 to

p∗ > 0 at a certain value of x, which can be assessed as xc =
√

3 ⇒ yc ≈ 0.5. This is

consistent with a certain sequence of RZs approaching the real axis around yc ≈ 0.5 in

fig. 7, which supports the analytical assessment of the critical points.

In general, the discontinuous transition appears for cases of k ≥ 3 spin interactions

and the continuous transition occurs when c is even. Actually, for a c = 4 3-CT,

both discontinuous and continuous transitions occur at x ≈ 0.86 ⇒ y ≈ −0.15 and

x = 3 ⇒ y ≈ 1.1, respectively. Figure 8 shows a sequence of RZs approaching y ≈ 1.1,

while it is difficult to clearly identify a sequence converging to the other critical point

y ≈ −0.15. We consider that this is because the system size is not large enough, since

a portion of the RZs in the left shows a tendency to approach the real axis, though
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further increase of the system size is practically unfeasible due to the limitations of

current computational resources.

In conclusion, the analysis shown in this section indicates that RZs of CTs are

related to the phase transitions on the boundary of a BL. Regardless of the type of

transition, a sequence of RZs approaches a critical point on the real axis when the BL

provided from a CT in the limit L→ ∞ exhibits a phase transition on the boundary.

4. Discussion

4.1. Possible link to AT instability

The AT condition, which is critical for FRSB, has not yet been characterized for sparsely

connected spin models. In fact, previous research has found that critical values of the

continuous transitions from p∗ = 0 to p∗ > 0 are candidates for those of the AT condition

for systems of even c [26]. This motivates us to further explore a possible link between

RZs and the AT instability.

Divergence of the spin-glass susceptibility of the root site 0 is often adopted as

the critical condition of the AT instability for BLs [33, 34, 35, 36]. Generalizing the

condition to the case of finite n, we obtain

χSG =
∑

i

[(
∂ 〈S0〉
∂hi

)2
]

n

. (52)

where [(· · ·)]n means an average with respect to a modified distribution of coupling and

boundary field

Pn({Jij}, {hi}) =
P ({Jij}, {hi})Zn({Jij}, {hi})∑

{Jij}
P ({Jij}, {hi})Zn({Jij}, {hi})

. (53)

This definition is reasonable because eq. (52) correctly reproduces the AT condition of

fully connected systems for finite n in the limit of infinite connectivity c→ ∞ [31, 37].

In a cycle-free graph, an arbitrary pair of nodes is connected by a single path. Let

us assign node indices from the origin of the graph 0 to a node of distance G along the

path as g = 1, 2, . . . , G. For a fixed set of couplings and boundary fields, the chain rule

of the derivative operation indicates that

∂ 〈S0〉
∂hG

=
∂ 〈S0〉
∂h0

∂h0

∂ĥ0

∂ĥ0

∂h1

· · · ∂hG

∂ĥG

=
∂ 〈S0〉
∂h0

∂h0

∂ĥ0

G∏

g=1

∂ĥg−1

∂hg

∂hg

∂ĥg

=
∂ 〈S0〉
∂ĥ0

G∏

g=1

∂ĥg−1

∂ĥg

, (54)

as hg depends linearly on ĥg as hg = ĥg + rg, where rg represents a sum of the cavity

biases from other branches that flow into node g. For a BL of (k, c) = (2, 3), the BP

update yields an evolution equation of the cavity bias

ĥg−1 =
1

β
tanh−1

(
tanh(βJg) tanh(β(ĥg + rg))

)
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→
{

sgn
(
Jg(ĥg + rg)

)
( |ĥg + rg| ≥ 1 )

Jg(ĥg + rg) ( otherwise )
( β → ∞ ), (55)

where Jg denotes the coupling between nodes g− 1 and g, and similarly for other cases.

To assess eq. (52), we take an average of the square of eq. (55) with respect to

the modified distribution Pn({Jij}, {hi}). Here, rg can be regarded as a sample of a

stationary distribution determined by the convergent solution of eq. (34) for the BL. As

rg is limited to being an integer and |Jg| = 1, eq. (55) gives

∣∣∣∣∣
∂ĥg−1

∂ĥg

∣∣∣∣∣ =






0 ( |ĥg + rg| > 1 )

0 or 1 ( |ĥg + rg| = 1 )

1 ( otherwise )

, (56)

where the value of 0 or 1 for the case of |ĥg + rg| = 1 is determined with a probability

of 1/2 since the sign of the infinitesimal fluctuation of ĥg is determined in an unbiased

manner due to the mirror symmetry of the distribution of couplings.

Equation (56) indicates that the assessment of eq. (54) is analogous to an analysis

of a random-walk which is bounded by absorbing walls. We denote by P(G→0) the

probability that
∣∣∣∂ĥg−1/∂ĥg

∣∣∣ never vanishes during the walk from G to 0 and the value

of
∏G

g=1 |∂ĥg−1/∂ĥg| is kept to unity. This indicates that
[(

∂ 〈S0〉
∂hG

)2
]

n

∝ P(G→0) (57)

holds. Summing all contributions up to the boundary of the BL yields the expression

χSG ∝
L′∑

G=0

(k − 1)G(c− 1)GP(G→0). (58)

The critical condition for convergence of eq. (58) in the limit L′ → ∞ is

log ((k − 1)(c− 1)) + lim
G→∞

1

G
logP(G→0) = 0. (59)

This serves as the “AT” condition in the current framework.

For a BL, eq. (59) can be assessed by analyzing the random walk problem of eq.

(56), as shown in Appendix D. We evaluated the critical yAT values of eq. (59) for several

pairs of (k, c), shown in Table 1 along with other critical values. These results show

that the values of yc, which signal the phase transitions of the boundary condition of the

BL, agree with neither yAT or ys, implying irrelevance of RZs to the replica symmetry

breaking.

The irrelevance of RZs to the AT instability may be interpreted as follows. We

can link the spin-glass susceptibility to gN(n) in general by considering the following

extension:

Ng̃N(F ;m,n) =

log

[(
Tr exp

(
−β

m∑

a=1

H(Sa) +
N∑

l=1

Fl

∑

a<b

Sa
l S

b
l

))
(
Tr e−βH

)n−m

]
, (60)
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(k, c) yAT yc ys

(2, 3) 0.32851 none 0.41741

(2, 4) 0.35118 log
√

3 ≈ 0.54931 0.38926

(3, 3) 1.33186 0.85545 ∞
(3, 4) 0.93328 −0.15082, log 3 ≈ 1.09861 1.41152

Table 1. Relevant values of y. Note that each kind of y is calculated using different

models. The 1RSB transition point ys is for RRGs and yAT is for RRGs or BLs. The

singularity of the cavity-field distribution yc is common for all the models.

by breaking the replica symmetry introducing replica symmetric interactions among

m out of n replica systems with coupling F = (F1, F2, . . . , FN). Obviously, gN(n) =

g̃N(F = 0;m,n) and gN(n) = g̃N(F ;m = 1, n) hold. Analytically continuing eq. (60)

to n,m ∈ R and expanding the obtained expression around F = 0 for m ≃ 1 yields

Ng̃N(F ;m,n) ≈ NgN (n) +
m− 1

2
F T χ̂SGF + (higher orders), (61)

where χ̂SG =
([

(〈SlSk〉 − 〈Sl〉 〈Sk〉)2]
n

)
represents the spin-glass susceptibility matrix.

Equation (61) implies that the divergence of the spin-glass susceptibility is linked

to analytical singularities of limN→∞ g̃N(F ;m,n) for m 6= 1. However, for m = 1,

which corresponds to gN(n) examined in the present paper, it is difficult to detect the

singularity because the factor m − 1 with F T χ̂SGF makes the divergence of the spin-

glass susceptibility irrelevant to the analyticity breaking of g(n) = limN→∞ gN(n). A

possible solution is to consider systems of m 6= 1 in the framework of 1RSB. However,

an examination along this direction is beyond the scope of the present paper.

4.2. Physical implications of the obtained solutions

We concluded that bifurcations of the fixed point solutions of the BP update correspond

to phase transitions of the boundary condition of a BL and are not relevant to either

1RSB or FRSB. Before closing this section, we discuss the physical implications of the

obtained solutions.

A naive consideration finds that the solution of p∞;0 = p = 1 corresponds to

a paramagnetic phase implying that any cavity fields vanish and therefore all spin

configurations are equally generated. Note that this phase is of the ground states in the

limit β → ∞ and is different from the usual temperature-induced phase.

For finite p < 1, relevant fractions of the spins can take any direction without

energy cost because the cavity field on the site is 0. This implies that the ground state

energy is highly degenerate, which means that this solution describes a RS spin-glass

phase. Actually, it is easy to confirm that the following equality holds:

qµν =
[TrSµ

g S
ν
g e

−β
P

µ Hµ

]

[Zn]
= TrSµ

g S
ν
g ρg(S) = 1 − pg;0. (62)
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Hence, the singularity of the cavity-field distribution in the limit g → ∞ can be regarded

as the transition of the spin-glass order-parameter. A finite jump of π∞(h) for the k = 3

case is the first-order transition from the RS spin glass to paramagnetic phases, and

such a transition is also observed in the mean-field models. The transitions from p = 0

to finite-p for the c = 4 case can be regarded as a saturation of q to qEA = 1. We infer

that these are the transitions from RS to RS phases. Notice that such a transition has

not been observed for infinite-range models. Our results indicate that this q = 1 phase

appears only when c is even. This means that such a phase is highly sensitive to the

geometry of the objective lattice. This may be a reason why such a transition has not

been observed in other models.

5. Summary

In summary, we have investigated RZs for CTs and ladders in the limit T, n→ 0, βn→
y ∼ O(1). Most of the zeros exist near the line Im(y) = π/2 in all cases investigated; in

particular, for the (k, c) = (2, 3) CT and the width-2 ladder all the zeros lie on this line.

For the width-2 ladder we have proved that the free energy is analytic with respect to y

in this model. On the other hand, for some CTs, a relevant fraction of the RZs spreads

away from the line Im(y) = π/2 and approaches the real axis as the generation number L

grows. This implies that g(n) has a singularity at a finite real y in the thermodynamic

limit. A naive observation finds that the RZs collision points correspond to phase

transitions of the boundary condition of the BL. We have compared them with known

critical conditions of 1RSB and FRSB and concluded that these conditions are irrelevant

to the behavior of RZs. This is consistent with the absence of RSB in CTs reported in

some earlier studies.

To fully understand and use the replica method, as well as mathematical

verification, an description of the physical significance of the method is required. We

hope that our results presented in this paper lead to a deeper understanding of the

mysteries of the replica method.
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Appendix A. BP formula for a 2 × L ladder system

For a 2 × L ladder system, the BP equation can be derived in a similar manner to the

CT case. We trace out the two spins of the previous generation to the ith generation,
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Figure A1. Unit cell of a 2 × L ladder.

as in fig. A1. This yields an expression corresponding to eq. (9) as
∑

S1,2
i−1

exp{β(Ji−1S
1
i−1S

2
i−1 +K1S1

i−1S
1
i +K2S2

i−1S
2
i + J∗S1

i S
2
i )}

= A exp(β(J∗ + Ĵi−1)S
1
i S

2
i ). (A.1)

From simple algebra we obtain

Ĵi−1 =
1

β
tanh−1(tanhβK1 tanh βK2 tanhβJi−1), (A.2)

A = 4
cosh βJi−1 cosh βK1 cosh βK2

cosh βĴi−1

. (A.3)

This shows that the effective bond Ji between S1
i and S2

i becomes

Ji = J∗ + Ĵi−1. (A.4)

These relations indicate that the one-site marginal distribution ρi for trees is replaced by

the two-site marginal distribution ρi(S
1
i , S

2
i ) for a width-2 ladder. From the symmetries

of the original model, we can specify the form of this distribution as

ρ(S1
i ,S

2
i ) =

∫
dJiπ(Ji)

eβJi

P

α S1,α
i S2,α

i

(4 cosh βJi)n
. (A.5)

This expression can be interpreted as showing that the effective bond fluctuates by

quenched randomness. In a similar way to the tree case, the iterative equation for π(J)

is derived as

πi(JI) ∝
∫
dJi−1πi−1(Ji−1)

[
δ(Ji − J∗ − Ĵi−1)

(
cosh βJi

cosh βĴi−1

)n]
, (A.6)

and that for the effective partition function is

Ξi(n) = Ξi−1(n)

×
∫
dJi−1πi−1(Ji−1)

[
(2 cosh βK1)n(2 cosh βK2)n

(
cosh βJi

cosh βĴi−1

)n]
. (A.7)

In the limit β → ∞, βn→ y, we can derive the following formulas from above equations:

pg+1;0 =
1 − pg;0

1 − pg;0 − (1 + pg;0)e2y
, (A.8)
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Ξg+1 = Ξge
3y

(
pg;0 +

1

2
(1 − e−2y)(1 − pg;0)

)
. (A.9)

For larger-width ladders, the number of spins added by an iteration is greater than 2

and many-body interactions appear. This aspect complicates the problem and means

that simple relations like (A.4) cannot be obtained.

Appendix B. Location of replica zeros of a width-2 ladder

We prove that all RZs of a 2 × L ladder lie on the line Im(y) = π/2 for any L. We

introduce the notation

pl(x) = pl;0 =
nl(x)

dl(x)
, (B.1)

where dl and nl are polynomials of x = ey and nl(x)/dl(x) is assumed to be irreducible.

The outline of the proof is as follows. First we present the general solution of pl and show

that the denominator dl has 2F ((l + 1)/2) roots which are all purely imaginary. The

function F (l) is the floor function, which is defined to return the maximum integer i in

the range i ≤ l. Also, we show that the number of nontrivial solutions of Ξl = 0 is equal

to 2F ((l+ 1)/2) and Ξl can be factorized as Cl(x)dl(x), where Cl(x) is a polynomial of

x. From the correspondence of the numbers of the roots, we conclude that all the zeros

of Ξl are equivalent to the roots of dl(x) and Cl(x) takes the form axb.

The iteration (A.8) for pl has a solvable form and its general solution is given by

pl =
2(4l − h(x)l)

4l(2 + x2 − x
√
x2 + 8) − (2 + x2 + x

√
x2 + 8)h(x)l

, (B.2)

where

h(x) ≡ −4 − x(x+
√
x2 + 8) = 4

x+
√
x2 + 8

x−
√
x2 + 8

. (B.3)

The roots of the numerator in eq. (B.2) can be easily calculated as

x =

{
±2

√
2i (l = 2m+ 1)

0,±2
√

2i (l = 2m)
, (B.4)

where i denotes the imaginary unit and m is a natural number. Then, we concentrate on

finding the roots of the denominator in eq. (B.2) except for those of the numerator (B.4).

From numerical observations in sec. 3, we found that any of the roots x∗, which satisfy

Ξl(x
∗) = 0, are purely imaginary and bounded by |x∗| ≤ 2

√
2. Hence, we assume these

conditions and perform the variable transformation z = −xi. Equating the denominator

of eq. (B.2) to 0, we get
(
h(−ix)

4

)l

=

(√
8 − z2 + iz√
8 − z2 − iz

)l

=
2 − z2 − i

√
8 − z2

2 − z2 + i
√

8 − z2
. (B.5)

If z is real, we can transform eq. (B.5) into a simple relation using the polar

representation
√

8 − z2 + iz = r1e
iθ1 (−π < θ1 ≤ π). The result is

ei(2θ1−π)l = ei2θ2 , (B.6)
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where the argument θ2 is defined as r2e
iθ2 = 2 − z2 − i

√
8 − z2 (−π < θ2 ≤ π).

We now enumerate the number of solutions expressed in this form. While z is real

and varies from −2
√

2 to 2
√

2 continuously, the radius r1 stays at a constant 2
√

2 and

the argument θ1 varies from −π/2 to π/2 in the positive direction. In the same situation,

θ2 changes from +π to −π in the negative direction. The radius r2 is not constant, but

is finite in this range. The variables θ1 and θ2 are obviously continuous and monotonic

functions of z. Therefore, the argument of the left-hand side of eq. (B.6) starts from

θ = 0 and rotates with angle 2lπ in the positive direction and the counterpart of the

right-hand side varies from the same point θ = 0 to −4π. This means that there are

l+1 values of z where the factor (2θ1(z)−π)l becomes equal to 2θ2(z) except for trivial

solutions z = ±2
√

2. When l is even, these solutions contain a trivial solution z = 0,

which can also be confirmed from eq. (B.2). Hence, the number of nontrivial roots of dl

becomes l + 1 for odd l and l for even l, which is equivalent to 2F ((l + 1)/2).

As already noted, the number of nontrivial solutions of Ξl = 0 is equal to

2F ((l + 1)/2). This can be understood by considering that the number of terms of

[Zn] is determined by the maximum number of defects nd. In the 2× l ladder case, the

value of nd is given by F ((l + 1)/2) and the number of terms is nd + 1. The highest

degree of the relevant polynomials for RZs comes from the difference between the highest

and lowest ground-state energies and is given by 2nd = 2F ((l + 1)/2), which yields the

number of nontrivial solutions of Ξl = 0.

Finally, we prove that Ξl takes the form Alx
bldl(x) by induction. From eqs. (A.8)

and (A.9) with the initial conditions p0;0 = 0, Ξ0 = x, we derive

p1 =
1

x2 + 1
, Ξ1 =

1

2
x2(x2 + 1), (B.7)

which satisfies the desired form. Assuming that the condition Ξl = Axbldl(x) is true for

l = k, we substitute this expression into eq. (A.9) to get

Ξk+1 = Axbkdkx
3

{
nk

dk
+

1

2

(
1 +

1

x2

)(
1 − nk

dk

)}

=
1

2
Axbk+1

{
(x2 − 1)nk + (1 + x2)dk

}
. (B.8)

Equation (A.8) can be written as

pk+1 =
dk − nk

(x2 − 1)nk + (1 + x2)dk
=
nk+1

dk+1
, (B.9)

which gives

(x2 − 1)nk + (1 + x2)dk = ck+1(x)dk+1(x), (B.10)

where ck+1 is a polynomial and satisfies ck+1 = (dk−nk)/nk+1. Substituting this relation,

we can rewrite eq. (B.8) as

Ξk+1 =
1

2
Axbk+1ck+1(x)dk+1(x). (B.11)

As we have already shown, the number of nontrivial zeros of Ξk+1 is equal to that of

dk+1. This means that ck+1 cannot have nontrivial roots and hence ck+1 takes the form
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Axb. This completes the proof by induction and demonstrates our proposition that all

RZs for a 2 × L ladder have a constant imaginary part iπ/2.

Appendix C. Rate function for a CT with c = 3

We here calculate the generating function gL(y) for finite L. Consider an L-generation

branch of a c = 3 CT. An explicit form gL(y) is easily derived from eq. (35) as

gL(x) =
2L

2L+1 − 1
g0+

2L+1

2L+1 − 1
(1−2−L) log x+

1

4 − 2−L+1

L−1∑

i=0

log fi

2i
, (C.1)

where x = ey and

g0 = log Ξ0, fi = fi(x, pi;0) = 1 − 1

2
(1 − x−2)(1 − pi;0)

2, (C.2)

using the same notations as in sec. 2. The rate function with finite generations L is

given by

ΣL(x) =
2L

2L+1 − 1

(
g0 − x log x

dg0

dx

)

+
1

4 − 2−L+1

L−1∑

i=0

1

2ifi
(fi log fi − Ci(x)x log x) , (C.3)

where the factor Ci(x) is given by

Ci(x) =
∂fi

∂pi;0

dpi;0

dx
+
∂fi

∂x
= (1 − x−2)(1 − pi;0)

dpi;0

dx
− x3(1 − pi;0)

2. (C.4)

Let us denote Σ∞(x) = limL→∞ ΣL(x). Because the inequality Σ∞ ≤ 0 always

holds, the 1RSB transition does not occur as long as the condition Σ∞(x) = Σ(x) is

satisfied.

In the range y ≥ 0 ⇔ 1 ≤ x, the factor fi is bounded as 1/2 ≤ fi ≤ 1. This

guarantees the uniform convergence of gL(x). The boundedness of (dpi;0/dx) can also

be shown with some calculations. These conditions guarantee that t ΣL(x) converges to

a function Σ∞ uniformly. Hence, from elementary calculus, the equality Σ(x) = Σ∞(x)

holds, which implies the absence of 1RSB. The same conclusion is more explicitly derived

for a BL because fi does not depend on i.

Appendix D. AT condition for the (k, c) = (2, 3) case

We here evaluate the AT condition for a BL with (k, c) = (2, 3). To evaluate P(G→0),

we construct the transition matrix of our random-walk problem. For a given (ĥg, ĥg+1),

the posterior distribution of rg is given as

p(rg|ĥg) = p(rg, ĥg)/p(ĥg) ∝ ey(|rg+bhg|−|rg|−|bhg|)p(rg), (D.1)

where p(rg) is the prior distribution of rg. This enables us to derive the concrete

expression of p(rg|ĥg), summarized in Table D1. We can distinguish three states of

the walker at the g-step as follows:
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rg \ ĥg 1 0 −1

1
1 − pb

(1 + pb) + (1 − pb)e−2y

1 − pb

2

(1 − pb)e
−2y

(1 + pb) + (1 − pb)e−2y

0
2pb

(1 + pb) + (1 − pb)e−2y
pb

2pb

(1 + pb) + (1 − pb)e−2y

−1
(1 − pb)e

−2y

(1 + pb) + (1 − pb)e−2y

1 − pb

2

1 − pb

(1 + pb) + (1 − pb)e−2y

Table D1. Values of p(rg|ĥg) for (k, c) = (2, 3). The symbol pb is the probability that

the cavity bias takes the value 0.

|1〉: The walker has already vanished.

|2〉: The walker survives and |ĥg| = 1.

|3〉: The walker survives and |ĥg| = 0.

Hence, using the relation (56), the transition matrix T can be written as

T =




1 p1,1 + 1
2
p0,1

1
2
p1,0 × 2

0 1
2
p0,1

1
2
p1,0 × 2

0 p−1,1 p0,0


 , (D.2)

where prg,bhg
represents p(rg|ĥg) and the condition prg,bhg

= p−rg,−bhg
applies. We assume

that the states |1〉 and |2〉 occur with equal probability 1/2 when |ĥg + rg| = 1,

considering the symmetric ±J model. This matrix has three eigenvalues: λ1 = 1, λ2,

and λ3. The eigenvector of the largest eigenvalue λ1 = 1 corresponds to the state |1〉
or the vanishing state. Hence, the surviving probability P(G→0) is given by 1 − 〈1|G〉,
where |G〉 is the state of the walker at the G step. For large G, the relevant state is of

the second-largest eigenvalue λ2, and we get

P(G→0) ≈ λG
2 . (D.3)

Using the stationary solution (51), we obtain P(G→0) as a function of x = ey. The AT

condition becomes

χSG ∝
∑

G

(k − 1)G(c− 1)GP(G→0) → ∞ ⇔ (k − 1)(c− 1)λ2 > 1. (D.4)

This condition is easily examined numerically and we can verify that the AT instability

occurs at yAT ≈ 0.32851 for (k, c) = (2, 3).
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[25] Mézard M and Parisi G 2003 J. Stat. Phys. 111 1

[26] Montanari A and Ricci-Tersenghi F 2003 Euro. Phys. J. B 33 339

[27] Katsura S, Inawashiro S and Fujiki S 1979 Physica 99A 193

[28] Nakanishi K 1980 Phys. Rev. B 23 3514

[29] Yedidia J S, Freeman W T and Weiss Y 2005 IEEE Trans. Inform. Theory 51 2282
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