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O ‘Abstract

<E Zeros of the moment of the partition functiafl] ; with respect to complex are investigated in the zero temperature lignit> oo,
O) n — 0 keepingy = gn ~ O(1). We numerically investigate the zeros of th& Ising spin glass models on several Cayley trees and
<1 hierarchical lattices and compare those results. In baticés, the calculations are carried out with feasible cotagonal costs
by using recursion relations originated from the structwkthose lattices. The results for Cayley trees show thatjaence of
the zeros approaches the real axiy ofiplying that a certain type of analyticity breaking actyalccurs, although it is irrelevant
¢ for any known replica symmetry breaking. The result of hienécal lattices also shows the presence of analyticitakirey, even
I in the two dimensional case in which there is no finite-terapge spin-glass transition, which implies the existerfc® zero-
.—2 temperature phase transition in the system. A notable terydef hierarchical lattices is that the zeros spread in sewéjion
“O of the complexy plane in comparison with the case of Cayley trees, which relgat the diference between the mean-field and
+— finite-dimensional systems.

E Keywords: replica method, disordered systems, spin glasses
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C 1. Introduction In the usual replica framework, to obtain the full functibna

_ ) form of ¢(n), we use the analytical continuation frame N to
Disordered systems are one of the challenging problems i . p (or C). This is because the exact assessmenZ#f[for

statistical physic_s. Especiglly, spin glass_es have bem_sih n € R is generally infeasible except for a few solvable models.
—] gated for a long time as an ideal and nontrivial problemimgat 1, yever, this procedure of the replica method causes a prob-

disorder. One of the most important approaches in the sping . 5ome analyticity breaking can generally occus(n) due
glass theory is the replica method. This method has provideg, e jimitN — o0, Which is essentially incompatible with the

—] both profound concepts and useful calculation techniques 55 \vtic continuation used in the replica method. This rsean
— theory, Wh_'ch p_romoted the expansion of the §p|n-glassr;heo that the expression analytically continued frora Nton e R
() lo other disciplines gftg)r successful construction of &lBS  j| jead to an incorrect solution for the limit— 0 if the break-
< tion of spin gIa_ss_eo [L/2,8, 4]. ) L ing of analyticity occurs in the region @ n < 1. To recover
A characteristic property of disordered Systems IS Its saMe correct solution af(n), in such cases, we need to know the
ple fluctuation of the thermodynamlc guantities ra 6, 7]. I_nproperties of the analyticity breaking #n) and to modify the
the framework of the replica method, the fluctuation, whih i solution according to the details. This provides a motozato

- reflected in higher-order cumulants of the free energy,Se®s e, 610p a method directly investigating the analyticitgdiing
.— tially utilized to calculate the typical free energy. Thssdc- ¢ #(n) with respect tan.

>< tually implemented by an assessment scheme of the cumulant_rhis3 type of transitions o(n) is considered to be related

E generating functllom(n) defined as follows; to the replica symmetry breaking (RSB) in the Parisi scheme
: g ich i i i i

o0 = im 5 100(2"L. () Gpineiass models i the mil — 0 (t gves e oxactresult
where the brackets {], denote the average over the quenched©r the Sherrington-Kirkpatrick model [10,/11]). Actualfpr a
disorder in the system. The typical free energy =  Vvariation of the discrete random energy model, it is shoven th
—limnow[log Z]3/(BN) is obtained fromg(n) as —-gf =  the analyticity breaking of(n) actually occurs and is relevant
limn_o(8¢(n))/(8n) , and any high-order cumulants can be sim-t0 the one-step RSB (1RSB) [12, 13]. This fact again motwate
ilarly derived from higher-order derivatives ofn) with respect ~ Us to investigate the analytic behaviorg{f) and to examine

ton. the phase transitions occurring in the regios 0.
Under these motivations, we provide a method to investigate
Email address: obuchi@spin.ess.sci.osaka-u.ac.jp (Tomoyuki the analyticity breaking ap(n), based on the Yang-Lee descrip-
Obuchi) tion of phase transitions [14]. In particular, we obsene 1b-
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ros of [Z"]; with respect to complex replica numb&rwhich  This limitation restricts the energy of the system to angete

will be referred to as “replica zeros” (RZs). value, which means that edy] (3) becomes a polynomial equa-
For the discrete random energy model mentioned above, thi#on of x = €, and the computational cost to calculate the RZs

strategy successfully characterizes the 1RSB transittoora-  equation becomes significantly reduced.

panied by a singularity of the large deviation rate functidn

the free energy [15]. On the other hand for the infinite-step of 2.2. Resultsfor Cayley trees

RSB (FRSB), a possibility that the RZs cannot charactehee t

FRSB is suggested [16], according to an argument based on ttfg

RZs of the+J models on some tree-like systems and an anal

sis of the spin-glass susceptibility. These results regumiore

detailed discussions about the relation between the aciglyt

of ¢(n) and the RSB.

For Cayley trees, we carffieiently calculate the moment

"5 by combining the Bethe-Peierls approach and the replica

Ymethod [16]. Using this scheme, the RZs equation can be
constructed and solved in a polynomial time with respect to
the number of spindl under appropriate boundary conditions.

. : . . . However, for Cayley trees, the number of spins and the degree

Another interesting problem concerning the RZs is its appli of the polynomial of Z"]; exponentially increases as the char-

c_a:jtlon tt)? flg_lte-dmensm;]nalr]systlfm;.slgs still a SUbJam.«an'. __acteristic length of the trele (distance between the central and
siderable discussion whether the oceurs or not in InlteE)oundary spins) grows. As a result, it is infeasible to sdihee

d‘mer?S‘O”"’_" systems. The RZs formulation can be a help Rzs equationZ"]; = O for largeL. The resultant plots for the
examine this problem. o k = 2-body interacting Cayley tree with the coordination num-
For a concrete progress along the direction, we here treat hberc - 3 and the 3-body interacting Cayley tree with= 3

erarchical lattices [17, 18, 19]. Although it is known thBet .o shown in figll1. We can find two characteristic behavior
RSB is absent for spin-glasses on hierarchical latticesZ2]

the dimensionality of these lattices can be tuned by changin
a parameter and also the renormalization group analysesgiv
the exact partition function. These useful properties cakanm
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the hierarchical lattices be a productive first step to exarttie alr o e eok orcn—— | cocggmg « o ox  oormmeg |
finite-dimensional ffects on the RZs of spin glasses. 5 5 | )

This paper is organized as follows. In the next section, we 1 E ] " ’
briefly summarize the formulation and the results for Cayley S

05 q 05 -

trees in [[15]. In section 3, we provide a formulation and the

RZs plots for the hierarchical lattices, and compare theltes ‘ ‘ I R
with those of Cayley trees. The last section is devoted to the *  ** = ey R
conclusion.

Figure 1: RZs plots fork,c) = (2,3) and (33) Cayley trees. All the zeros
lie on a line Im§) = n/2 for the (23) case (left panel) but a sequence of
zeros approach the real axislamcreases for the (3) case (right panel). The
arrow indicates the collision point expected from the asialpf the RS order
parameter in thé — oo limit.

2. Formulation and resultsfor Cayley trees

2.1. Basic formulation
Our main objective is to solve the following equation with in these plots. One is for thé,(C) = (2,3) case (left panel) in

respect tan; which all the zeros lie on a line Infi( = 7/2 and never reach the
real axis. That is in contrast to the other one for thejase
[z"], =0. (2)  (right panel) in which a sequence of zeros approaches the rea

) o axis asL grows. These facts imply that analyticity breaking of
This transcendental equation is, however, hard to solvgdor #(n) is absent for the (B) case but present for (3).
eral temperat_ur(_es. The.n we here restrict ourselves to tiee ze pp, important point is whether the analyticity breaking i th
temperature limig — co involvingn — 0 andgn — y ~ O(1). (3 3) case is related to the RSB or not. According to earlier
In this limit, the relevant contribution to the partitionrfction  stydies. some RSB occurs in the regular random graphs, which
only comes from the ground state, and the RZs equalibn (e known to share many properties with Cayley trees, of the
becomes same parameters,€) = (2,3) and (33) [22,/23]. This fact,
[e_yEg] -0 3) combined with the apparent absence of the analyticity bingak
SIS in the left panel in fig[1l, implies that the RZs of Cayley trees
whereE, is the ground state energy. Besides, we focus on thd© ot reflect any RSB. Hence, the analyticity breaking@)
+J models whose Hamiltonian and distribution of interactions” the case (33) should be considered to be a phase transition
without ferromagnetic bias are given by keeping the repllcfa symmetry (RS). To see this, we pbsga/e th
asymptotic behavior of the order parameter, which is giwen b
H = — Z 3;SiS;. (4)  the probability that the cavity field tak_es zero at a distabhce
o from the boundaryp, .o, and calculate linL. pL.o = p* [1€].
1 For the (23) casep* becomes a simple analytic functionxof
P(Jj) =5 (5(Jij +1)+0(Jij — 1))~ (5) €. Onthe other hand, for the,(3) casep* shows non-analytic



- consisting of all the nested spins betwéeand j’. Using the

....... Pen notations in fig(B, the explicit forms fd?; andR- are
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Using these relations, we caffieiently calculate the free en-
Figure 2: Asymptotic behavior of the order parameterkot) = (3,3) Cayley ~ €rgy of general Ising systems on the hierarchical lattices.
tree. The solid line denotes the — oo solution. A finite jump of the order In random systems on the hierarchical lattices, the prdbabi
parameterp” = lim_ .« P occurs ak ~ 2.35 & y ~ 0.85. ity distribution P(J;;) characterizes the behavior of the systems
[24,[25]. In the current problem, however, we need the joint
probability distribution of the bond and free enef@fFi;, Jij).
behavior and the result is given in f[g. 2. This figure shows al he renormalized distributio®’(Fi.j., Jiy) is calculated from
finite jump of the order parameter at~ 2.35 & y ~ 0.85.  the original distributiorP(Fij, J;;) as
This singular point is indicated by an arrow on the right pane
of_fig..[]]. The ap_prc_)aching poi_nt of the RZs seems to agree with P'(Fij, Jip) = f[l_[ dJ;;dF;;P(F;. Jij)]
this singular point in observation by eye, which impliest thz i
singularity indicated by the RZs corresponds to the sirrifyla

of the RS order parameter and does not reflect any RSB. %S (Ji"j' _ RJ({‘]ij}))(S[Fi/’j’ _ Z Fij— RF({Fi,-})]. (10)
i

3. Formulation and resultsfor hierarchical lattices Again we take the zero-temperature liffit> o, n — 0 keep-

ing Bn — y. In this limit, the free energy;; becomes the

ground state enerdy;; and only takes an integer value, which is

also the case for the bodg. This enables us to exactly perform

the renormalizatiori{10) without numerical error. Once eé g

the distributionP(E;;, Ji;), the RZs equation can be constructed
nE)y using the distribution of the ener§yE;;) = fdJijP(Eij, Jij)

as

3.1. Formulation for hierarchical lattices

In this section, we treat theJ models without ferromagnetic
bias on hierarchical lattices. A hierarchical lattice isisisted
from unit cells [17} 18, 19]. The structure of the cell detares
the dimension of the system. Here we treat a simple cell co
sisting of two edge spins anpnside spins (fig.13). Each pair of
edge and inside spins is connected by the interaction. Tie co

deijP(Eij)e‘yEii =0. (112)

Construction

These equation§ (1L0) arld{11), which enables us to exaetly as

o o sess the RZs, constitutes the main result of this section.

i j

3.2. Results

The procedures mentioned above, however, involve some dif-
Figure 3: A picture of a unit cell of = 3. White circles denote edge spins and ficulties. For hierarchical lattices, a characteristigfgrL can
black ones represent inside spins. be naturally defined as the number of hierarchy of the nested
unit cells. AsL grows, the number of spins increases exponen-
struction of a hierarchical lattice is performed by chaggan tially, which Ieads_ tolthe rapid growth of the supportR{Eij)
and the exponential increase of the degree of polynomidlef t

bond to a unit cell, and the calculation of the partition fiioe R7s equation. These causerdiulties in evaluating the convo-
is conducted by the inverse procedure. The unit cell is renor, 9 ' 9

malized to a bond between two edge spins by tracing out thIlJtIon (10) and solving the RZs equatidn(11), which makes it

inside spins. This yields the following equations exprddsg hard to treat large size systems. These_ restrict the val’ugs °
o . ] andL to moderate values. For instance, in this paper, we inves-
the renormalization relatior®; andRg;

tigate the caseg = 2 and 3 (the corresponding dimensions are

Renormalization

I = Ra({Jijh), (6) d=2and 258, respectively) in the rangés< 5 forq = 2 and
, L < 4 forq= 3. The resultant plots of RZs are given in fig. 4.
Fiy = Z Fij + Re({Jij}), 7 In this figure, we can find that some sequences of the zeros
" approach the real axis gfasL grows in bothgq = 2 and 3 cases.
where the setfJ;j} is for the bonds in the unit cell anﬂf,j, For the two dimensional casq & 2), those would be related

denotes the renormalized bond between ditesd j’ of the  to the zero-temperature spin-glass transitions, sincalisence
renormalized system, arRJ[,j, is the free energy of the system of the finite-temperature phase transition are clarifieddvggal
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Figure 4: The RZs of hierarchical lattices. The left paneloisq = 2 and

current formulation becomes a useful analysis leadingrtbén
understanding of finite-dimensional spin glasses.
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region, which is in contrast to the case of Cayley trees. Af®muences of

zeros approach the real axis in both panels, which impligséttertain type of
analyticity breaking occur in both cases.

researches [25, P6]. To make this point clearer, we shoedt tr
the limit L — oo as the case of Cayley trees, and now analysesj1] M. Mézard, G. Parisi and M. A. Virasor&pin Glass Theory and Beyond

along this direction are in progress.

Another interesting implication from fifg] 4 is that the RZs ar

spreading in a wide region of the complgxylane. This is in

contrast to the case of Cayley trees, which implies that tize a

Iyticity breaking of¢(n) in the hierarchical lattices might have
different properties from those of Cayley trees. Since in gen—[

eral the continuous zeros distribution is related to thetinen
uous singularities of the system [27], the RZs observed in fig [6] G. Parisi and T. Rizzo, Phys. Rev. Let01 (2008) 117205.

[4 may be related to extraordinary phase transitions, afthou
they would be diterent from the RSB transitions because the
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