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We investigate the p-spin model with Gaussian-distributed random inter-
actions in the microcanonical ensemble using the replica theory. For p = 2,
there are only second-order phase transitions and we recover the results of
Sherrington and Kirkpatrick obtained in the canonical ensemble. For p ≥ 3,
the transition between the ferromagnetic and paramagnetic phases is of first
order, and the microcanonical and canonical ensembles give different results.
We also discuss the ensemble inequivalence of the random energy model, cor-
responding to the limit p → ∞. This is the first systematic treatment of spin
glasses with long-range interactions in the microcanonical ensemble, which
shows how the two ensembles give different results.

1. Introduction

Theoretical aspects of spin glasses attract interest not only from the statistical-physics
community, but also from many other areas of science. The methods of spin glass
theory have become indispensable tools for fields like statistical mechanics, information
processing, image restoration and neural networks, see [1, 2] and references therein. Most
models discussed in the mean-field context of spin glasses have long-range interactions,
a typical case being the infinite-range Sherrington-Kirkpatrick model [3]. The purpose
of the present paper is to investigate whether or not the canonical and microcanonical
ensembles give different results on such systems with long-range interactions.
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Interactions are said to be long range when they decay like ∼ 1/rα, where r is the
spatial distance between two interacting objects, and α is less than or equal to the
dimension of the system, or when the range of the interactions is of the same order as
the system size [4]. Systems with long-range interactions appear in virtually all areas
of physics ranging from atomic physics to gravitational systems (see [4, 5, 6, 7, 8] for
review). Recent results on long-range interacting systems [4, 9, 10, 11, 12, 13, 6, 14,
5, 7, 8, 15] seem to indicate that we have to rethink the long-held principle that the
physical properties of a system are independent of the ensemble they were derived from,
especially where first order transitions are concerned [16, 17, 18]. Related phenomena
have been observed in driven systems with local dynamics [19, 20]. The main reason for
ensemble inequivalence in systems with long-range interactions is the lack of additivity
of the energy: If two identical systems with energy E are brought together, the total
energy is not 2E because the interactions between the two subsystems are of the same
order of magnitude as E. This suggests us to be cautious in the interpretation of the
standard derivation of the canonical ensemble from the microcanonical ensemble.

In a typical phase diagram of many materials, with the temperature and an external
control parameter as axes, first-order phase boundaries are simple lines in the canonical
ensemble, but in the microcanonical ensemble the question is sometimes more involved
because there the temperature is not the principal control parameter. The temperature
has to be derived from the equilibrium entropy, and this fact can sometimes have puzzling
consequences, including negative specific heat, for systems with long-range interactions
[21, 22, 23]. Experimentally, negative specific heat has been observed for a small cluster
of atoms [24].

Another feature of ensemble inequivalence is the appearance of a mixed phase instead
of a clear phase separation in the region of a first-order transition [10, 13, 15]. Ergodicity
breaking can also occur, when the thermodynamical phase space is not convex. This
means that some of the intermediate states between two phase-space points are not
realizable, inhibiting a smooth interpolation between these two points. Then, metastable
states in a region of the phase space have diverging decay times since the system cannot
smoothly evolve toward the true equilibrium state in another region of the phase space.
When many-body interactions come into play, the ergodicity can already be broken
before the phase transition occurs, inhibiting equilibrium phase transitions [25, 26, 15].

Spin systems on a lattice have been a tool of choice for detailed theoretical stud-
ies since many models are tractable analytically and show many features of ensemble
inequivalence [10, 13, 25, 26, 15, 27]. A paradigmatic, much studied system with long-
range interactions is the infinite-range p-spin model, also known as the Ising model
with infinite-range p-body interactions. It has been studied extensively in the canon-
ical ensemble in the context of spin glasses. For, p = 2 the model is known as the
Sherrington-Kirkpatrick model [3]. For finite p, the p-spin model has been discussed
in many papers, two of the most recent ones being [28, 29], while in the limit p → ∞
it is known as the random energy model [30]. In a recent paper [15] we investigated
the ferromagnetic p-spin model in random fields and have shown that the canonical and
microcanonical ensembles lead to completely different phase diagrams for p ≥ 3. To
discuss ensemble inequivalence in systems with randomness in the interactions, includ-
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ing spin glasses, however, new tools are required. In this paper we extend the replica
trick to the microcanonical ensemble and apply it to the p-spin model with Gaussian-
distributed random bonds and study whether the two ensembles lead to the same or
different consequences.

The paper is organized as follows. In section 2 we introduce the model and sketch
the derivation of the replicated microcanonical entropy, with detailed calculations being
given in the Appendix A. We compare the canonical and microcanonical phase diagrams
for finite p and take the limit p → ∞ in section 3. We conclude with a discussion and
summary in section 4.

2. Model and entropy

In this section we introduce the model and explain the derivation of the microcanonical
entropy and show its replica symmetric form.

The p-spin model consists of N spins (in our case Ising spins Si = ±1, i = 1, 2, . . . , N),
where each spin interacts with all other spins through p-body interactions. Its Hamilto-
nian is given by

H = −
∑

i1<...<ip

Ji1,...,ipSi1 . . . Sip . (1)

In this paper the bonds (interactions) are quenched random numbers obeying a Gaussian
distribution

P (Ji1...ip) =

(

Np−1

πJ2p!

)1/2

exp

(

−
(

Ji1...ip −
j0p!

Np−1

)2 Np−1

J2p!

)

, (2)

with mean j0, called the ferromagnetic bias. For p = 2, this model is known as the
Sherrington-Kirkpatrick model [3] and has been studied extensively in the canonical
ensemble (see e.g. [1]).

The thermodynamic potential in the microcanonical ensemble is the entropy, which
is defined as the logarithm of the sum of states having some given energy, S(ǫ) = lnΩ,
where we have chosen the unit kB = 1. Thus, we have to take the trace of a delta
function over the spin configurations,

Ω = Tr δ(Nǫ −H),

where ǫ is the energy per spin. Since we have to average over the quenched randomness
of bonds, equation (2), we employ the replica trick as detailed in Appendix A. For the
entropy per spin, s = S/N , we get

[Ωn] = exp (nNs) ,

where we will have to take the limits N → ∞ and n → 0 in the end. According to
equation (13), the entropy per spin is given by

ns = −
∑

αβ

(ǫ+ j0m
p
α)(Q

−1)αβ(ǫ+ j0m
p
β)−

∑

α>β

qαβ q̄αβ −
∑

α

mαm̄α + lnTr eL, (3)
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with

Qαβ =

{

1 (α = β)
qpαβ (α 6= β)

and
L =

∑

α>β

q̄αβ
∑

i

Sα
i S

β
i +

∑

α

m̄α

∑

i

Sα
i ,

where the sums over α and β go from 1 to n. Here, qαβ = N−1
∑

i S
α
i S

β is the spin glass
order parameter and mα = N−1

∑

i S
α
i is the ordinary magnetization. The symbols q̄αβ

and m̄α arise from technical operations and can be understood as the Fourier modes of
qαβ and mα, respectively. For details, see Appendix A.

We will work mainly with the replica-symmetric ansatz, qαβ = q and mα = m, and
consider replica symmetry breaking where necessary. As shown in Appendix A.1, the
replica symmetric entropy is

sRS = − 1

J2
(ǫ+ j0m

p)2
1

1− qp
+

1

2
qq̄ − 1

2
q̄ −mm̄+

∫

Du ln 2 cosh(
√
q̄u+ m̄),

where Du = du exp(−u2/2)/(2π)1/2 , with the saddle-point equations as given in equa-
tions (20a-d).

To be able to compare the microcanonical phase diagram to the canonical one, we
have to know the temperature of the microcanonical system. The inverse temperature
is defined as the energy-derivative of the entropy,

1

T
=

∂sRS

∂ǫ
(m∗, q∗) = −2(ǫ+ j0(m

∗)p)

J2(1− (q∗)p)
, (4)

where m∗ maximizes and q∗ minimizes the entropy simultaneously. Notice that a pecu-
liarity of the replica trick is that while the equilibrium entropy has to be maximal with
respect to m, it has to be minimal with respect to q.

3. Phase Diagrams

In this section we compare the canonical and microcanonical phase diagrams of the
model introduced in the previous section for finite p and in the limit p → ∞.

3.1. Sherrington-Kirkpatrick model

The Sherrington-Kirkpatrick model (p = 2) [3] is well understood and has been studied
extensively in the canonical ensemble. As only second-order phase transitions occur in
this model, it is straightforward to confirm that the ensembles give equivalent results and
lead to the same phase boundaries between the paramagnetic and ordered (ferromagnetic
or spin glass) phases as long as the replica-symmetric solutions are concerned.
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3.2. Many-body interactions

The canonical phase diagram of the p-spin model with p = 3 is also well known [31,
29]. The paramagnetic (PM) and ferromagnetic (FM) phases are separated by a first
order transition. The spin-glass phase (SG) appears only when we consider replica-
symmetry breaking (discussed in Appendix A) and the PM-SG transition is of second
order. Between the FM and SG phases lies a mixed phase M where the FM solution
shows replica symmetry breaking. The canonical phase diagram is depicted in figure 1
a).

Figure 1: a) The canonical phase diagram of the model with p = 3. The equilibrium
FM phase extends up to the blue dashed line and the spinodal line is drawn
green dash-dotted, which marks the metastability limit of the FM phase. The
horizontal thin dash-dotted line is the dynamical SG transition. b) The micro-
canonical phase diagram. Here, the FM phase extends up to the blue dashed
line, while the PM solution extends down to the red line, resulting in a mixed
phase FM+PM. The green dash-dotted line is the microcanonical spinodal line,
which limits the metastability of the microcanonical FM phase. Note that the
microcanonical spinodal line (green dash-dotted) can lie below the equilibrium
FM boundary (blue dashed), because the energy, not the temperature, is the
control parameter in the microcanonical ensemble. The specific heat can be
negative, thus a higher temperature may mean lower energy. For details, see
text and figure 2. A dynamical SG-transition line as in a) may exist, but
is omitted here due to lack of firm evidence. The black dashed line in both
diagrams is the Nishimori line.

Figure 1 b) shows the microcanonical phase diagram. The phase boundary between
the PM and FM phases (red and blue dashed lines), as well as the spinodal line (green
dash-dotted) were obtained by solving the replica symmetric saddle point equations
(20a-d). The PM-SG phase boundary (black) was calculated from the first-step replica
symmetry breaking equations (25a-e). In both ensembles the PM-SG transition occurs at
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TPM-SG = 0.651. The SG phase extends up to the critical value of the ferromagnetic bias
of jFM2

0 = 0.768, where we have chosen the unit J = 1, and the metastability limit of the
FM phase is at jFM1

0 = 0.736. Between these two values of j0 lies for low temperatures
the region M with metastable FM solutions, while the SG and replica-symmetric FM
phase meet directly around T = TPM-SG and j0 = jFM2

0 . Note that the replica-symmetry
breakdown is used only for the SG solution in the present calculations.

The microcanonical phase diagram deviates from the canonical one only along the
PM-FM transition. The PM phase in the microcanonical ensemble extends down to
the red line where the PM solution ceases to be stable (to be called the m = 0-line),
while the FM phase extends up to the blue dashed line (m > 0-line), resulting in a
FM-PM mixed phase (FM+PM). We can understand the reason for the emergence of
the FM+PM phase in the microcanonical ensemble when we look at the entropy as
a function of the energy as depicted in figure 2 a). For each value of the bias j0 there
exists a FM solution to the saddle-point equations (20a-d) which crosses the PM entropy
at some critical energy. Since the inclines of both curves are different, this results in
a temperature jump at the transition as shown in 2 b). Thus, the m = 0-line (red
in figure 1 b)) corresponds to the temperature of the PM solution at the transition,
while the m > 0-line (blue dashed in figure 1 b)) corresponds to the FM solution. The

Figure 2: a) Microcanonical entropy versus energy per spin for various values of j0, PM
stands for the entropy of the paramagnetic solution. b) Corresponding caloric
curves. The vertical dotted lines indicate the critical energies for j0 = 0.8,
j0 = 0.9 and j0 = 1.2. Negative specific heat occurs where dT/dǫ < 0.

appearance of a ‘reentrant’ tail of the FM transitions around the center of figure 1 b)
implies an instability of the replica-symmetric solution. In the canonical ensemble this
is well understood through the de Almeida-Thouless line [32], but the generalization to
the microcanonical ensemble is quite involved and will not be developed here, mainly
because it has no direct relevance for the ensemble inequivalence.

We can also draw the Nishimori line (black dashed in figure 1), which was recently
generalized to the microcanonical ensemble [33]. The Nishimori line is a hypersurface
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in the parameter space of models with quenched randomness, where the averages of
physical quantities take on simple values [1, 34]. In the present case, the condition
T = 1/(2j0) defines the Nishimori line in the canonical ensemble and ǫ = −j0 in the
microcanonical ensemble. An interesting feature is that on the Nishimori line there is no
ensemble inequivalence [33] and the microcanonical m = 0- and m > 0-lines meet there.

Part of the FM solution in the FM+PM phase for j0 > 0.92 has negative specific heat
closely below the critical energy. Below j0 < 0.92 part of the metastable states have
this property. To illustrate this point, we show the PM entropy and short segments of
the FM entropy for various values of j0 in figure 2 a). The corresponding caloric curves
are drawn in figure 2 b), where the metastable part is shown dashed, while the stable
part is shown as a thicker line. Negative specific heat occurs when dT/dǫ < 0. As j0
decreases, so does the region of negative specific heat. Note that dT/dǫ < 0 occurs only
in the mixed region FM+PM and never in the pure FM phase.

The ergodicity is nowhere broken in this model. This is therefore an example for a spin
system with infinite-range, many-body interactions in which not all features of ensemble
inequivalence appear.

The phase diagrams for p = 4 and p = 5 are qualitatively the same as for p = 3, while
the region M becomes narrower and TPM-SG becomes lower as p grows. In table 1 we list
the results of the critical values including results of the limit p → ∞, discussed in the
next section 3.3.

p = 2 p = 3 p = 4 p = 5 p → ∞
TPM-SG 1 0.651 0.628 0.615 1/(2

√
ln 2) = 0.601

jFM1
0 0.5 0.726 0.79 0.811

√
ln 2 = 0.833

jFM2
0 0.5 0.767 0.81 0.82

√
ln 2 = 0.833

Table 1: Summary of critical values for various p in the microcanonical ensemble.

3.3. Random energy model

In the limit p → ∞, the model (1) is known as the random energy model [30]. The energy
levels are Gaussian-distributed random variables. It is also known to be the simplest
spin glass [35] and its canonical phase diagram can be obtained analytically in a simple,
straightforward manner. The SG phase in the canonical ensemble does not show up with
the replica-symmetric ansatz, but is fully described by the first-step replica symmetry
breaking (1RSB). The FM and PM phases are replica symmetric.

Let us first derive the PM-FM phase boundary in the microcanonical ensemble. Here,
we can still use the replica-symmetric ansatz. In the limit p → ∞, the saddle-point
equations (20a-d) have the following solutions: q = m = 0 (PM) and q = m = 1
(FM), the latter being together with the requirement ǫ = −j0. Taking the same limit,
p → ∞, for the 1RSB saddle-point equations (25a-e) it is straightforward to see, as in the
canonical case, that the only other relevant solution, apart from the replica symmetric
FM and PM solutions, is the SG solution q1 = 1, q0 = 0 and m = 0. To obtain the phase
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diagram, we list the entropies of the different phases,

sPM(ǫ) = ln 2− ǫ2 (−
√
ln 2 ≤ ǫ ≤ 0) (5)

sFM(ǫ) = 0 (ǫ = −j0) (6)

sSG(ǫ) =
1

x
(ln 2− ǫ2) (−

√
ln 2 ≤ ǫ ≤ 0), (7)

where x(0 ≤ x ≤ 1) is the 1RSB parameter, the boundary between q0 and q1 in the
1RSB matrix (see Appendix A.2 for details). In the energy range −

√
ln 2 ≤ ǫ ≤ 0, the

two entropies sPM and sSG compete but the former wins because sPM < sSG as long as
0 ≤ x < 1. As mentioned before, as far as the SG phase is concerned, the entropy has
to be minimal.

Figure 3: a) The canonical phase diagram of the random energy model with the energy
ǫ and the ferromagnetic bias j0 as axes. The PM phase exists at energies above
ǫ ≥ −

√
ln 2 for j0 <

√
ln 2 and above the black line for j0 ≥

√
ln 2. The SG

phase exists at ǫ = −
√
ln 2 for j0 ≤

√
ln 2, shown green dash-dotted while the

FM phase (red) has the energy ǫ = −j0 for j0 >
√
ln 2. b) The microcanonical

phase diagram. The PM phase exists for energies ǫ ≥ −
√
ln 2, while the SG

phase manifests itself only at the energy ǫ = −
√
ln 2 (green dash-dotted) for all

values of j0. The FM phase (red) shows the same behavior as in the canonical
ensemble, it has ǫ = −j0 for j0 >

√
ln 2 and does not show up for a smaller

bias, j0 <
√
ln 2. The black dashed line in both diagrams is the Nishimori line,

which coincides with the ferromagnetic solution (red) for j0 >
√
ln 2

When x = 1, the two phases merge, but, on the other hand, x = 1 implies replica
symmetry. Thus, there is no SG phase except at ǫ = −

√
ln 2, where the two phases

merge, since both have zero entropy. The FM phase is allowed only when the energy
takes the specific value ǫ = −j0 .

For any value of j0 the FM and SG phases are defined only at a single energy re-
spectively, and therefore it is not possible to define a temperature for these phases. We
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cannot draw a standard phase diagram with the temperature and j0 as axes to compare
the microcanonical to the canonical phase diagram. We can, however, draw a canonical
phase diagram with the energy and j0 as the axes and thus compare the ensembles. This
is done in figure 3. We see that the phase diagrams are almost equivalent, except that
in the microcanonical case, figure 3 b), the PM extends down to ǫ = −

√
ln 2 for any j0.

For a clearer understanding, we investigate how the microcanonical phase diagram
evolves as p grows larger. To that end, we draw in figure 4 the microcanonical phase
boundaries between the PM and FM phases, scaled to their respective critical values
(see table 1) for p = 3 (black dash-dotted), p = 4 (red dashed) and p = 5 (blue). As the
curves suggest, the area of the mixed phase FM+PM grows larger with p. We can infer
that in the limit of very large p the pure FM phase extends only to the temperature
where the PM phase freezes out for j0 < jFM2

0 . The spinodal line and the m > 0-line
coincide in the limit p → ∞ and the mixed phase M, of the FM and SG states, will
disappear in this limit. The FM+PM phase extends over the whole quarter-plane right
to the critical j0 =

√
ln 2 and above T = 1/(2

√
ln 2). The SG phase is the same as in

the canonical case, while the pure PM phase exists above T = 1/(2
√
ln 2) and left of

j0 =
√
ln 2 as shown in figure 5 b). However, since neither the SG nor the FM phase have

clearly defined temperatures when p = ∞, the re-interpretation of figure 3 b) into the
(T, j0) plane as drawn in figure 5 b) is to be taken with caution and has to be contrasted
to results that were obtained in the microcanonical ensemble without the use of the
replica trick [30, 35, 36].

Figure 4: The microcanonical curves show that the mixed region FM+PM, which lies
between the two curves of the respective p, extends in an ever wider region for
growing p.

4. Conclusion

We have derived the microcanonical entropy of the p-spin model with Gaussian-distributed
random interactions with the help of the replica trick. To the best of our knowledge,
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Figure 5: a) Canonical phase diagram of the random energy model. b) Microcanonical
phase diagram as inferred from the limit of large p. The dashed line in both
diagrams is the Nishimori line.

our study represents the first consequent treatment of spin glasses in the microcanonical
ensemble. For p = 2, we recover the results of Sherrington and Kirkpatrick, which was
to be expected, as there are only second-order phase transitions present. For p > 2,
many-body interactions effect a first-order transition between the PM and FM phases
and part of the FM solution in the mixed phase FM+PM has negative specific heat
above a certain value of j0, but never in the pure FM phase. This system does not show
ergodicity breaking, which means that all metastable states have finite lifetimes for finite
systems. We have also taken the limit p → ∞ within the framework of the replica the-
ory and could show that the two ensembles give different results for the random energy
model.

Our study shows that great care has to be taken in the analysis of many-body spin
glasses, and even in well-understood systems new properties can emerge. This fact
should particularly be taken seriously in the spin-glass context, where the realistic finite-
dimensional properties are often inferred from the analysis of mean-field limits.
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A. Derivation of the Entropy

In this section we will derive the entropy from the replicated number of states in detail
and calculate the form of the entropy in the replica-symmetric and the first-step replica-
symmetry breaking ansatz.
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The Hamiltonian is given by

H = −
∑

i1<...<ip

Ji1...ipSi1 ...Sip ,

where the interactions are distributed via

P (Ji1...ip) =

(

Np−1

πJ2p!

)1/2

exp

(

−
(

Ji1...ip −
j0p!

Np−1

)2 Np−1

J2p!

)

≡
√

F

π
e−(Ji1...ip−j0/F )2F .

We want to calculate the microcanonical entropy per spin: s = lnΩ/N where

Ω = Tr δ(E −H) = Tr

∫

dk

2π
eik(E−H), (8)

and the trace is over the Ising spins.
We use the replica trick and can closely follow the calculations for the canonical

ensemble [1]: [lnΩ] = limn→0 ([Ω
n]− 1)/n. The replicated sum of states reads

[Ωn] =
∫

∏

i1<..<ip

dJi1...ip

√

F

π
e−(Ji1...ip−j0)2F Tr

∫

(

∏

α

dkα
2π

)

e
i
∑

α kα(E+
∑

Ji1...ipS
α
i1
...Sα

ip
)
, (9)

where α runs from 1 to n. We write (
∏

α dkα/2π) = Dk and integrate over the Ji1..ip to
get

[Ωn] = Tr

∫

Dk exp



iE
∑

α

kα − 1

4F

∑

α,β

kαkβ
∑

i1<...<ip

Sα
i1 ...S

α
ipS

β
i1
...Sβ

ip





× exp



i
j0
F

∑

α

kα
∑

i1<...<ip

Sα
i1 ...S

α
ip



 . (10)

Now, we make use of the relation

1

Np−1

∑

i1<...<ip

Si1 ...Sip ≈ N

p!

(

1

N

∑

i

Si

)p

, (11)

which holds for N ≫ 1. We set J = 1 for simplicity and have

[Ωn] = Tr

∫

Dk exp

{

N i
∑

α

kα

(

E/N + j0

[

1

N

∑

i

Sα
i

]p)}

× exp



−N

4

∑

α,β

kαkβ

[

1

N

∑

i

Sα
i S

β
i

]p


.
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It is convenient to introduce δ-functions δ(mα − 1/N
∑

i S
α
i ) and δ(qαβ − 1/N

∑

i S
α
i S

β
i )

for α > β. Then by rewriting ǫα = E/N + jmp and performing the integrals over k, we
arrive at

[Ωn] ∝ Tr

∫

Dm Dq exp



−N
∑

αβ

ǫα(Q
−1)αβǫβ





×
∏

α

δ(mα − 1

N

∑

i

Sα
i )
∏

α>β

δ(qαβ − 1

N

∑

i

Sα
i S

β
i ), (12)

with Dq =
∏

dq, Dm =
∏

dm and Qαβ = 1 for α = β and Qαβ = qpαβ otherwise. Insert-
ing the integral representations of the δ-functions and collecting the terms proportional
to N allows us to evaluate the integral with the saddle point method as

[Ωn] ∝ expN



−
∑

αβ

ǫα(Q
−1)αβǫβ −

∑

α>β

qαβ q̄αβ −
∑

α

mαm̄α + lnTr eL



 (13)

with
L =

∑

α>β

q̄αβ
∑

i

Sα
i S

β
i +

∑

α

m̄α

∑

i

Sα
i . (14)

A.1. Replica-symmetric solution

If we set qαβ = q and mα = m, we have

Qαβ =

{

1 (α = β)
qp (α 6= β)

. (15)

Then the sum over the elements of the inverse of Qαβ is calculated by a very simple
trick:

∑

γ

Qαγ(Q
−1)γβ = δαβ

∑

αγ

Qαγ

∑

β

(Q−1)γβ = n.

Noting that the sum of all columns of Qαβ yields the same result,
∑

β Qαβ = 1+(n−1)qp,
we arrive at

∑

αβ

(Q−1)αβ =
n

1 + (n− 1)qp
. (16)

We next have to trace over the Ising spins. Using

L = q̄

(

∑

α

Sα

)2

+ m̄
∑

α

Sα − n

2
q̄, (17)
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we can take the n → 0 limit as

lim
n→0

1

n
ln Tr eL =

∫

Du ln 2 cosh(
√
q̄u+ m̄)− 1

2
q̄, (18)

with Du = exp(−u2/2)/
√
2π.

The entropy defined by s = [Ωn]/nN now becomes in the limit n → 0, N → ∞

sRS = − 1

J2
(ǫ+ j0m

p)2
1

1− qp
+

1

2
qq̄ − 1

2
q̄ −mm̄+

∫

Du ln 2 cosh(
√
q̄u+ m̄), (19)

with the saddle point equations

q =

∫

Du tanh2(
√
q̄u+ m̄) (20a)

m =

∫

Du tanh(
√
q̄u+ m̄) (20b)

q̄ =
2

J2
(ǫ+ j0m

p)2
pqp−1

(1− qp)2
(20c)

m̄ = −2j0
J2

(ǫ+ j0m
p)
pmp−1

1− qp
. (20d)

A.2. First-step Replica Symmetry Breaking

The first-step replica symmetry breaking is characterized by splitting the diagonal of the
matrix qαβ into x × x blocks and filling the off-diagonal elements of these blocks with
q1 and the rest of the matrix with q0, while the diagonal is filled with 0.

As such, the entropy is calculated from (13) as s = ln[Ωn]/nN . The corresponding
terms are calculated as

1

n

∑

αβ

(Q−1)αβ =
1

1 + (x− 1)qp1 + (n− x)qp0
=

1

1− (1− x)qp1 − xqp0
, (21)

1

n

∑

αβ

q̄αβqαβ = nq̄0q0 + x2(q̄1q1 − q̄0q0)
1

x
− q̄1q1 = −(1− x)q̄1q1 − xq̄0q0 (22)

and

1

n
ln Tr eL =

1

x

∫

Du ln

∫

Dv coshx
(

u
√
q̄0 + v

√
q̄1 − q̄0 + m̄

)

− 1

2
q̄1 + ln 2, (23)

where Dv is defined in the same way as Du. The entropy is

s1RSB = ln 2− (ǫ+ j0m
p)2

J2(1− (1− x)qp1 − xqp0)
+

1

2
((1− x)q̄1q1 − xq̄0q0 − q̄1)− m̄m

+
1

x

∫

Du ln

∫

Dv coshx
(

u
√
q̄0 + v

√
q̄1 − q̄0 + m̄

)

(24)

13



and the saddle point equations are

q̄a =
(ǫ+ j0m

p)22pqp−1
a

J2(1− (1− x)qp1 − xqp0)
2

(a = 0, 1) (25a)

m̄ = − 2pj0m
p−1(ǫ+ j0m

p)

J2(1− (1− x)qp1 − xqp0)
(25b)

q0 =

∫

Du

(
∫

D′v tanhK
∫

D′v

)2

(25c)

q1 =

∫

Du

∫

D′v tanh2 K
∫

D′v
(25d)

m =

∫

Du

∫

D′v tanhK
∫

D′v
(25e)

K = u
√
q̄0 + v

√
q̄1 − q̄0 + m̄ (25f)

D′v = dv exp(−v2/2) coshxK. (25g)
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