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We prove the existence of Néel-type long-range order in the ground state of the
spin-1/2 XXZ model with A(exchange anisotropy)>1.67 on the square lattice. We
further show the existence of long-range order for 4>1.10 and 0= 4 <0.59 by assum-
ing monotonicity of nearest neighbor correlations as functions of the system size. The
assumption of monotonicity is supported by numerical calculations.

The two-dimensional quantum spin system
has been attracting attention recently for its
possible relation to the mechanism of high-

temperature superconductivity.”? We discuss

here one of the important aspects of this prob-
lem, i.e., the existence of Néel-type long-range
order in the ground state of the spin-1/2 XXZ
model. The Hamiltonian is

H=3,(SfS;+S87S)+A458:5%), )
(<7

where the summation runs over the nearest
neighbor pairs on the square lattice. In a
previous paper? we proved the existence of
long-range order for 4>1.72 and 0=4<0.20
using the method originally developed by
Dyson, Lieb and Simon.® More precisely, in
the XY-like region (0=4 =<1), we showed that
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for 0=4<0.20, where |A| is the lattice size
and
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The summation in (3) extends over all lattice
sites and the brackets { ) denote the average
by the ground-state wave function. Similarly,
we proved in the Ising-like region (4 = 1) that
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for 4>1.72. In the present paper, the inequal-
ity (4) is proved for an extended range

A>1.67. It is further shown that (2) holds
when 0=4<0.59 if one assumes monotonic-
ity of the nearest neighbor correlations as func-
tions of the system size (which is verified
numerically). Under similar assumptions, we
show that (4) holds for 4 >1.10.

Let us start the argument with the case of
the Ising-like anisotropy 4=1. A sufficient
condition for the existence of long-range order
has been derived? as

—{xxy
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where <{zz) (or <{xx>) denotes the nearest
neighbor correlation function <S§S7> (or

{S%ST>) of the infinite-size system. The
quantity 7 is an integral:

—<zz>> I, ®)

S d?p ‘/Z—cos P1—COS D>
F2=

2Q2m)? Y2+cos pi+cos p,
X (—cos p;—cos pz)
=0.646. 6)

Here, the symbol (+) means that the integral
is limited to the region in the first Brillouin
zone where the integrand is positive. To see if
(5) is satisfied for a given A4, we proceed to
derive a lower bound on the lhs and an upper
bound on the rhs of (5). For this purpose, we
point out that the correlation —<xx) is
bounded from above by the value of the same
quantity at A=1 (which will be denoted as
—<{xx>y). The reason is as follows.
The ground-state energy per bond,
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e=2{xx>+4{z2>, 0]
has a derivative,”
de
A {zz), )
which leads to
e 9z
a4 =% ©)

according to the concavity of the free energy
(or the energy at T=0).® The quantity in the
middle expression of (9) is equal to —(2/4)
3{xx)>/dA4, as verified by explicitly differen-
tiating (7) and comparing the result with (8).
Hence —<xx) is a monotone decreasing func-
tion of 4. This implies that —{xx) at a certain
A (=1)is bounded from above by —<{xx>y. In
this way, we are allowed to replace —<xx> on
the rhs of (5) with —<{xx>yu.

The correlation —<zz> on the lhs of (5) is
bounded from below as

2 xx>—e 2{xx>u—ey
- = = ) 10

{zz> 4= y (10)
where e, is a variational energy. From these
estimations, the sufficient condition (5) is
reduced to

2xxya—e,_ [—<xxDu
> I.
A 24
We use the variational energy given in the Ap-
pendix of ref. 2 in the lhs of (11). A lower
bound on the lhs and an upper bound on the
rhs of (11) are obtained by substituting an up-
per bound on —<xx>g (which gives a lower
bound on <{xxDy). Our best upper bound
—<{xx>y=<0.11895 has been derived as
follows.
Let us consider a finite-size system described
by the Hamiltonian

Hy= Z J:jS:'SJ,
<ij>

(11

(12)

with free boundary conditions. The positive
exchange interaction J,; depends on <ij> in
general. We denote the lowest eigenvalue of
H; as Eo({J;}). Then, the expectation value of
H; with respect to the ground-state wave func-
tion of the uniform infinite-size system (all
J,;=1) satisfies
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<Hp zEf{J,}). (13)

Since the infinite-size system is translationally
invariant, (12) and (13) lead to

(8,8, (Z; JizEo({ J}),

or, by making use of the equivalence of three
axes,

3<xx>H§EO({ JU})/<Z; Jlj,

which is equivalent to

—<{xxou= —Eo({ J;})/3 <Z> Jy. (14)
]

This inequality (14) holds for any {Jj}.
Therefore, the problem of finding a good up-
per bound on —<xx)y is reduced to that of
searching for a {J;} which gives the lowest
value of rhs of (14). Our best result —<{xx>y
=<0.11895 was obtained for the lattice of Fig.
1. Thus, everything in (11) has been given ex-
plicitly, and we have found that (11) is
satisfied when 4 >1.67.

A further improvement is achieved by
assuming monotonicity of —<{xx> and —<{zz>
as functions of the system size. From the
numerical data in Fig. 2 (which were
calculated for finite-size systems with periodic
boundaries of the Oitmaa-Betts type”), we
think it plausible that —<zz) for a fixed 4
(>1) increases monotonically with | A1 in the
asymptotic region |A|>»1. The reason is as
follows. In Fig. 2, the system size dependence
of —<zz) changes in the range 1<4<1.08;

0.2 2.4 2.4 2.4 0.2
1.6 3.5 3.5 1.6

0.2 3 4 3 0.2
1.6 3.5 3.5 1.6

0.2 2.4 2.4 2.4 0.2
1 1 1 1

Fig. 1. The ground-state energy of this finite-size lat-
tice with free boundaries gives an upper bound
0.11895 to —<xx)y of the infinite-size system. The
numbers indicate the relative magnitude of the an-
tiferromagnetic exchange interactions {J,}.
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Fig. 2. The nearest neighbor correlation —<zz>
calculated for various finite-size systems of the Oit-
maa-Betts type.”

the crossing point A.(1A:l, 14;]) (at which
—<{zz) for 1Al is equal to —<zz)> for |4,l)
satisfies 1<A4.(20, 18)<A4(18, 16)<A(16, 10)
< 1.08 (see Fig. 3). This observation suggests
that, for any 4>1, —<{zz)> will eventually in-
crease with |A1. In particular, the range 4>
1.08 seems to be already in the asymptotic
region, even for | A1 as small as 10. As for the
other correlation function —<xx), this quan-
tity is monotone decreasing with the system
size 14| (=20) for all positive 4, as shown in
Fig. 4. Therefore, it is reasonable to assume
that, if 4=1.08, —<zz) of the infinite-size
system is bounded from below by its value at
| A1 =20, and —<xx) is bounded from above
by the value at |A1=20. When 4=1.10,
—<zz) for 1A1=201is 0.14175 and —<xx) is
0.10114. The sufficient condition (5) is
satisfied by these values. We note that (5) is
not satisfied at 4=1.09 even if monotonicity
of the nearest neighbor correlations is assum-
ed.

The same argument applies to the XY-like
region 0 =<4 = 1. The nearest neighbor correla-
tions —<xx)> and —<zz> are seen to be
monotone decreasing as || increases when
0=4 =1 (Figs. 2 and 4). We use this fact in the
following sufficient condition for (2) to hold:?
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Fig. 3. Schematic diagram of the dependence of
—<{zz> on | A| and 4 in the region 1 <A <1.08. From
this figure, we expect that —<{zz) for any fixed 4>1
will increase with |Al if [Al is larger than some
critical value |A,(4)!. This figure represents only the
relative position of the four curves; these curves are
too close to each other to be distinguished clearly in
the real scale.
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Fig. 4. The correlation —<xx) of the same lattices as
in Fig. 2.

=26 xxy>V—Lxx>—ALzz2ha(r),  (15)

where
Md?p 2—rcos pi—rcos px
hZ(r)= 2
2(2m) 2+cos p;+cos p2
X (—cos p; —COS Pa), (16)
with '
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_ zz2/{xx>+4
"1+ A<zzy [<xxy

The above-mentioned
monotonicity implies

—2{xx)=—e+ALzz> = —e,+ 422D 1 41=20,

amn

assumption on

(18)
and therefore,
_—<ZZ> —<ZZ>|A|=20 _
R= _<xx>§(_ev+A <ZZ>|A|=20)/2=Rmax'
19)

Since —<{xx) is non-negative,” (19) leads to
—{z2z) = —Rumalxx). (20)

If we replace —<zz) in the square root of (15)
by the upper bound (20), we have

27 —=<{xx) >4 1+ Ruax ha2(7). 21

A lower bound on the lhs of (21) is given by
(18). An upper bound on the rhs of (21) is
derived if we note that A,(r) is a monotone in-
creasing function of r.” This monotonicity
means that r of (17) should be replaced by its
largest possible value, which is achieved when
R is equal to Ry Thus, everything in (21) has
been given explicitly. By use of the variational
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energy of Suzuki and Miyashita® as e, in (18)
and (19), we have found that (21) is satisfied
when 0=4=0.59. This completes our argu-
ment in the XY-like region.

As has been pointed out by Kennedy et al.,”
the present criterion (5) or (15) for the ex-
istence of long-range order is unlikely to be
satisfied by the isotropic Heisenberg antifer-
romagnet (4 =1) even if the best numerical es-
timate of the correlation function is used. A
new approach should be developed to resolve
the case of the isotropic model.
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