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We show the absence of spin glass ordering in short range vector spin systems with
random symmetric exchange interactions in spatial dimension d<4. The argument is
an improvement of our previous theory; we circumvent the use of the unproved
assumption which has been shown not to hold by O’Neill and Moore. Still, we have
not completed a mathematically rigorous proof because of the use of the replica
method and of the unproved clustering property of spin correlation functions.

Introduction

§1.

Most of the spin glass physicists now believe
that the short range XY and Heisenberg
models do not undergo a spin glass transition
at a finite temperature in three dimensions.!”®
It is highly desirable to prove this belief by a
mathematically rigorous method. In a
previous paper” (referred to as ON hereafter),
the present authors pointed out a difficulty
in Schuster’s argument,'® which is basically
the Mermin-type!’ argument using the
Bogoliubov inequality, on the absence of spin
glass ordering in the XY and Heisenberg
models for spatial dimension d=4. We
showed how to improve his argument by ap-
propriately modifying definitions of various
quantities. ON further showed that the system
with power-decaying interactions (such as the
RKKY interaction) can be treated in the same
framework, and reproduced a phase diagram
proposed from renormalization group calcula-
tions.? ON’s argument was not rigorous in,
first, that the replica method was used, and sec-
ond, that an unconfirmed assumption was
used on the parameter dependence of a term
appearing in the inequality. We supposed that
this second assumption was reasonable since
the final results on the parameter region where
the spin glass ordering does not appear were in
quite good agreement with those derived from
other methods. O’Neill and Moore!'? (OM) dis-
cussed, however, that ON’s assumption is not
satisfied in a short range system.
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We show in the present paper that the
difficulty pointed out by OM can be avoided
by slightly changing definition of the terms ap-
pearing in the inequality. The argument is
restricted to the short range model.

§2. Definition

Most of the definition and notation parallel
those in ON. However, for self-containedness,
the list of definition and notation is given here.
We treat a system composed of classical vector
spins on a d-dimensional lattice. The Hamilto-
nian is given by

e}f—_—e}fsx+=}ff+9fp, (21)

Wex"__ - Z Jij(Siijx+Sinjy+ASiszz)s (22)
<ijy

Hy=—h Z &iSixs (2.3)

XD-: -D Z (S,'z)z. (24)

The range of interaction is short, which is sym-
bolized by the bracketed pair {ij ). The coupl-
ing Jj; is a quenched random variable with the
symmetric Gaussian distribution function of
variance J2. J#; represents a symmetry break-
ing random field along the x-axis. The distribu-
tion of ¢;is assumed to be symmetric Gaussian
with variance unity. S#p represents uniaxial
anisotropy.

It is convenient to introduce canonical
variables L; and 6; defined by

Si=(8*—L»"?cos 6;, (2.52)
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Siy=(S*—L})"*sin 6, (2.5b)
Siz=Li- (25C)

Using the replica method,”* ' we derive the
effective Hamiltonian 5#’(n) defined by

Trexp (=B’ (n)=[Z({ J;}, {&iH)")e, (2.6)

where B=1/ksT. The square brackets [ .
denote the configurational average over the
distribution of {J;} and {¢;}, and Tr is for
the integration over the canonical variables
{67, L7}, where a(=1,- - -, n) is the replica in-
dex. After performing the configurational
average, one finds

H'(n)=H&n)+H#{(n)+#H(n), 2.7

e}fe,x(n)= _EJZ Z
2 &

X {2 (S%S5+S585+ 48581,

(2.8)
«7ff’(n)=——§h22(z S, 2.9
Hb(n)=—D 3 > (SL). (2.10)

The prime on s#, #. etc. will be omitted
hereafter to simplify the notation. The spin
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glass order parameter g can be calculated as

g=lim lim lim g (A, N, n), (2.11)
h—=0 N> n—0
where N is the system size and
g(h, N, n)=<{SLS%>. (y#9) (2.12)

Here the angular brackets represent the
average

(- >=Trexp (=B (n) --. (2.13)

§3. Absence of Ordering

For simplicity of notation, we restrict
ourselves to the XY model (S=1, 4=0, and
L;=0at all i) in the present section. No essen-
tial change is necessary when one generalizes
the argument to an arbitrary model expressed
by the Hamiltonian (2.1)-(2.4): One should
only multiply appropriate expressions in
the following arguments by products of
(S2—LH'2

We make use of the Schwartz inequality

AAa*yz IKAICH, # D IP/CIIC, £ 117,
3.1

where 4 and C are periodic functions of the
variables {6}, and the Poisson bracket is de-
fined by

(X, Y= 5 5

j ap

Following Schuster,'® we choose A and C as

( ?*X Y Y X ) 6.2
003907 OLAL? 363007 LFALY ) :
A=Y exp (—ik-R;)sin 0] sin 8, (y#J) (3.3)

J
(3.4)

C=> exp {—ik-(R+R,)/2}LIL;,. (y#3)
im

We first note that the anisotropy ##p does not enter the calculations of the inequality (3.1)
because the Poisson bracket of C and 5#p identically vanishes from the definition of these two

quantities.

Let us evaluate the denominator on the right hand side (rhs) of (3.1). In the limit of small wave
number k—0 and small field #—0, the denominator is found to behave as

AIC, # 11> =cik*N+c:k**N+c3h*N,

3.5)

where ¢i, ¢; and c¢; are functions of # (independent of £ and N). ¢, and c¢; are positive while we
are not aware of the sign of c¢,. The reason is as follows.

The exchange term contribution is

UIC, #11D=3) D exp {—ik-(R+Rn—R,—R,)/2}

Im rs

PHoo BHe
> . (3.6)

00100° 00130?
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This is exactly the second term on the rhs of (2.13) of OM. Thus their analysis of dependence on
the wave number and the system size applies. It is useful to repeat their consideration here to
clarify the limit of applicability of their argument. By carrying out the differentiation, we find
that (3.6) in the limit of small k£ reduces to

B2J* > > <sin (87— 6)) sin (6, —6?) sin (07— 09) sin (05— 02)>[k-R;/2)k-Rye/2)%.  (3.7)

R

A first glance at (3.7) reveals superficial dependence on the system size as N? because of the dou-
ble summation over <ij ) and {bc). To see the size dependence more precisely, let us separate the
pairs {ij ) and {bc) far apart from each other. Then, if the clustering property of the spin correla-
tion function holds, the correlation function in (3.7) in the well-separated limit is

<sin (87 —0)) sin (87— 02)><sin (8} — 02) sin (85— 02)>,

which vanishes because of the global inversion symmetry 69— —0? at all i in the first factor.
Therefore the double summation in (3.7) yields finite contribution only when the pairs <ij > and
{bc) are close to each other. This implies that (3.7) is proportional to N, and hence we have de-
rived the first term on the rhs of (3.5).

The above argument breaks down if the spin correlation function in (3.7) does not cluster in a
sufficiently large system. The spin correlation function defined by a simple statistical mechanical
average may not cluster if the low temperature phase (if any) has a multivalley structure:'® An
average within a valley (or a Gibbs state) clusters'” whereas an average over the whole phase
space does not. We thus have to make an explicit statement here that the existence of an ordered
phase with a multivalley structure is not excluded on the basis of the present argument. Another
remark is made on the N-dependence of the rhs of (3.7). If the correlation function decays in a
power law as {ij) and {bc) are separated, (3.7) may have stronger dependence on N than simple
linear-N behavior even when clustering holds. Hence we assume here that the connected correla-
tion function

<sin (87— 67) sin (6, —0?) sin (97— 67) sin (05— 62))
~<sin (0 —0}) sin (87— 07)>{sin (63— 62) sin (03— 62)),

decays exponentially as the pairs {ij) and {bc) are separated.
The field term contribution to the Poisson bracket in (3.5) is

[C, #¢1=ph* >, exp (—ik-R)) sin 0] sin 6?.
7

Thus, together with the above result on [C, 5], we have
C, #ex+#:11>=1k*N+2B2T*h* > exp (—ik-R)) Z {exp (ik-R,/2)
1 {ab)

—exp (ik- R, /2)}*sin 67 sin 07 sin (03— 0%) sin (62— 03)>
+B%h* Y exp { —ik-(R;— R))}<sin 6] sin 05 sin 6] sin 67>.  (3.8)
Jl

From the same argument as above (i.e., using the clustering of spin correlation functions), we
find that all terms on the rhs of (3.8) is of O(/N). The dependence of the second and third terms
on the rhs of (3.8) on k and # are easily read out as £%h? and A4* in the leading order. This com-
pletes the derivation of (3.5). Since the first and the third terms on the rhs of (3.8) are both
squares of certain quantities, the coefficients ¢; and c; in (3.5) are positive.

Next, we evaluate the numerator on the rhs of (3.1). The explicit form is

" _ o >*H
CA[C*, #]>= %exp {ik-(R/+R,)/2} <A 60}'30f,,>' 3.9
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Evaluation of the expectation value on the rhs of (3.9) is carried out by integration by parts as
follows (remember that the brackets { ) denote the weighted integration over {67, L{}, and
only the former variables {6} play a role here):

<A 02 >_ <6Aaéi”>+ <A6%af>
007005 \367 965 B 007 962,

— o (A e (4
- 007967, h 007 362,

0 0K
=—p! ; 0i0mj exp (—ik - R;){cos 0] cos 05>+ <A W@> (3.10)
Accordingly, (3.9) becomes
. . ) KE AL
CA[C*, #1>=p"'Nq(h, N, n)—ﬁ?m]eXp {ik-(Ri+R.)/2} A?&sz—é@’; . (3.11)

Since we will later investigate the infrared (small-k) divergence of the integration of the rhs of the
Schwartz inequality (3.1), it is important to check the leading contribution as k approaches 0 in
the second term on the rhs of (3.9). Let us thus consider the following quantity

< (o + H5) 3(=}f’ex+3ff)>

24 367 363, G-12)

Im
By explicit differentiation, we obtain
O o .
—==PBJ* > > (0i—dy) cos (65— 05) sin (07 —6)),
a0 R
the summation of which over / vanishes. Hence the corresponding terms in (3.12) can be
neglected. The nonvanishing contribution comes from the field term in (3.12),

0H; 0+
A___
Z< 007} aefn>

Im

=p%h* Y, >, <sin 6 sin 67 sin 6] cos 7 sin 5,cos 5. (3.13)
Imj off

Equation (3.13) is proportional to A*N according to the clustering property; if any of /, m, or j is

separated far away from the others, the clustering property yields a vanishing factor. This fact im-

plies that /, m and j must be close to each other to give nonvanishing contribution to (3.13).
Therefore the rhs of (3.11) behaves as

(B7'q+csh*)N, (3.14)

as k—0.
The final piece to be evaluated in the Schwartz inequality (3.1) is its lhs. It is straightforward to
see

1
N 2 A4 =N. (3.15)

Substituting (3.5) and (3.14) into (3.1) and summing up over all & in the first Brillouin zone, with
(3.15) taken into account, we obtain

dk

1= +ch“§—~——————, 3.16

2@t el Ve r (3.16)
where irrelevant numerical factors have been dropped. The constants ¢, and ¢, have been kept in
(3.16) because their signs are not known and so may not be reduced to 1 by appropriate rescaling.

It is not difficult to show that the integral (3.16) diverges for d <=4 in the limit of small field.
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There exists a unique value k, satisfying

=’k +h,
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(3.17)

which can be verified by considering the £ dependence of k£* and c,#%k>+ h*. Since k*> c,h*k*+ h*

for k> ko, we obtain

k' 'dk

j\a kd——l dk Sa
> >
oKtk +R T kA ok R

Since ko approaches 0 as A—0 according to
(3.17), the integral diverges as A—0 if d=4.
This implies g—0 as #—0if d<4 due to (3.16).

§4. Conclusion and Discussion

It has been shown that the spin glass order
parameter g defined in (2.11) and (2.12)
vanishes if d <4 for the short range vector spin
system (2.1)-(2.4) in the limit of A—0 irre-
spective of the value of the uniaxial anisotropy
D. The present argument circumvents the
difficulty in ON pointed out by OM. There are
still several points to be resolved before we
reach the final proof. First, the use of the
replica method remains to be justified. Sec-
ond, the clustering property of spin correla-
tion functions has not been established
rigorously. If the phase space of the system
possesses a multiple valley structure, as in the
mean field model,'® the correlation functions
defined by the standard statistical mechanical
average do not cluster. Thus our argument
leads to the absence of ordering with a single
valley structure (including the simple overall
inversion symmetry), but a more complicated
type of ordering could exist. It should also be
added that the exponential decay of the con-
nected correlation function is assumed in the
order estimate of the sum of correlation
functions.

If the distribution of Jj; is not Gaussian,
higher order cummulants appear in addition
to the second order cummulant (2.8) in s#x(n).
We can develop the same argument as in §3 on
the order estimate of the higher order cum-
mulants. The conclusion that g=0 for d =4 re-
mains unchanged.

It is not easy to treat the long range (power-

Sa kd-l dk
W 2k*

decaying) interactions within the present
framework. The main source of difficulty is in
the evaluation of the N-dependence of the sum
of spin correlation functions. Nevertheless,
we believe that a minor improvement of the
original ON argument, if necessary, would
suffice to establish a satisfactory theory in
view of the successful reproduction of the
renormalization group phase boundary by
ON.
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